Skip to main content

Altered Proteostasis in Neurodegenerative Tauopathies

  • Chapter
  • First Online:
Proteostasis and Disease

Abstract

Tauopathies are a heterogeneous group of neurodegenerative dementias involving perturbations in the levels, phosphorylation or mutations of the neuronal microtubule-binding protein Tau. Tauopathies are characterized by accumulation of hyperphosphorylated Tau leading to formation of a range of aggregates including macromolecular ensembles such as Paired Helical filaments and Neurofibrilary Tangles whose morphology characterizes and differentiates these disease states. Why nonphysiological Tau proteins elude the surveillance normal proteostatic mechanisms and eventually form these macromolecular assemblies is a central mostly unresolved question of cardinal importance for diagnoses and potential therapeutic interventions. We discuss the response of the Ubiquitin–Proteasome system, autophagy and the Endoplasmic Reticulum-Unfolded Protein response in Tauopathy models and patients, revealing interactions of components of these systems with Tau, but also of the effects of pathological Tau on these systems which eventually lead to Tau aggregation and accumulation. These interactions point to potential disease biomarkers and future potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen J, Kanai Y, Cowan NJ, Hirokawa N (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360(6405):674–677

    Article  CAS  PubMed  Google Scholar 

  2. Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116(2):227–247

    Article  CAS  PubMed  Google Scholar 

  3. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sotiropoulos I, Galas MC, Silva JM, Skoulakis E, Wegmann S, Maina MB et al (2017) Atypical, non-standard functions of the microtubule associated tau protein. Acta Neuropathol Commun 5(1):91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9(13):4225–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spillantini MG, Goedert M (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21(10):428–433

    Article  CAS  PubMed  Google Scholar 

  7. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133(5):665–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurochkina N, Bhaskar M, Yadav S, Pant H (2018) Phosphorylation, Dephosphorylation, and multiprotein assemblies regulate dynamic behavior of neuronal cytoskeleton: a mini-review. Front Mol Neurosci 11:373. https://doi.org/10.3389/fnmol.2018.00373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jeganathan S, von Bergen M, Brutlach H, Steinhoff HJ, Mandelkow E (2006) Global hairpin folding of tau in solution. Biochemistry 45(7):2283–2293

    Article  CAS  PubMed  Google Scholar 

  10. Falcon B, Zhang W, Murzin A, Murshudov G, Garringer H, Vidal R et al (2018) Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561(7721):137–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ et al (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547(7662):185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–6089

    CAS  PubMed  Google Scholar 

  13. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83(11):4044–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arendt T, Stieler JT, Holzer M (2016) Tau and tauopathies. Brain Res Bull 126(3):238–292

    Article  CAS  PubMed  Google Scholar 

  15. Goedert M (2005) Tau gene mutations and their effects. Mov Disord 20(Suppl 12):S45–S52

    Article  PubMed  Google Scholar 

  16. Lee VM-Y, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21

    Article  PubMed  CAS  Google Scholar 

  18. Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118(1):53–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trojanowski JQ, Lee VM (2005) Pathological tau: a loss of normal function or a gain in toxicity? Nat Neurosci 8(9):1136–1137

    Article  CAS  PubMed  Google Scholar 

  21. von Bergen M, Barghorn S, Biernat J, Mandelkow EM, Mandelkow E (2005) Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta 1739(2–3):158–166

    Article  CAS  Google Scholar 

  22. Zhang W, Falcon B, Murzin A, Fan J, Crowther R, Goedert M et al (2019) Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. Elife 8:e43584

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 85(11):4051–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85(13):4884–4888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R et al (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85(12):4506–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R et al (2019) Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568:420–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24(1):24–41

    Article  CAS  PubMed  Google Scholar 

  28. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    Article  CAS  PubMed  Google Scholar 

  29. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  CAS  Google Scholar 

  30. Wang Y, Garg S, Mandelkow EM, Mandelkow E (2010) Proteolytic processing of tau. Biochem Soc Trans 38(4):955–961

    Article  CAS  PubMed  Google Scholar 

  31. Dennissen FJ, Kholod N, van Leeuwen FW (2012) The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Prog Neurobiol 96(2):190–207

    Article  CAS  PubMed  Google Scholar 

  32. Friedman LG, Qureshi YH, Yu WH (2015) Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics 12(1):94–108

    Article  CAS  PubMed  Google Scholar 

  33. Penke B, Bogar F, Fulop L (2016) Protein folding and Misfolding, endoplasmic reticulum stress in neurodegenerative diseases: in trace of novel drug targets. Curr Protein Pept Sci 17(2):169–182

    Article  CAS  PubMed  Google Scholar 

  34. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754

    Article  CAS  PubMed  Google Scholar 

  35. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Magalhaes S, Goodfellow B, Nunes A (2018) Aging and proteins: what does Proteostasis have to do with age? Curr Mol Med 18(3):178–189

    Article  CAS  PubMed  Google Scholar 

  37. Cheng J, North BJ, Zhang T, Dai X, Tao K, Guo J et al (2018) The emerging roles of protein homeostasis-governing pathways in Alzheimer’s disease. Aging Cell 17(5):e12801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA (2017) The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 1868(2):456–483

    Article  CAS  PubMed  Google Scholar 

  39. Bernassola F, Karin M, Ciechanover A, Melino G (2008) The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14(1):10–21

    Article  CAS  PubMed  Google Scholar 

  40. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  41. Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235(4796):1641–1644

    Article  CAS  PubMed  Google Scholar 

  42. Perry G, Friedman R, Shaw G, Chau V (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci U S A 84(9):3033–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shaw G, Chau V (1988) Ubiquitin and microtubule-associated protein tau immunoreactivity each define distinct structures with differing distributions and solubility properties in Alzheimer brain. Proc Natl Acad Sci U S A 85(8):2854–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Keck S, Nitsch R, Grune T, Ullrich O (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85(1):115–122

    Article  CAS  PubMed  Google Scholar 

  45. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75(1):436–439

    Article  CAS  PubMed  Google Scholar 

  46. Lopez Salon M, Morelli L, Castano EM, Soto EF, Pasquini JM (2000) Defective ubiquitination of cerebral proteins in Alzheimer’s disease. J Neurosci Res 62(2):302–310

    Article  CAS  PubMed  Google Scholar 

  47. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292(5521):1552–1555

    Article  CAS  PubMed  Google Scholar 

  48. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899

    Article  CAS  PubMed  Google Scholar 

  49. Cardozo C, Michaud C (2002) Proteasome-mediated degradation of tau proteins occurs independently of the chymotrypsin-like activity by a nonprocessive pathway. Arch Biochem Biophys 408(1):103–110

    Article  CAS  PubMed  Google Scholar 

  50. David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG (2002) Proteasomal degradation of tau protein. J Neurochem 83(1):176–185

    Article  CAS  PubMed  Google Scholar 

  51. Zhang JY, Liu SJ, Li HL, Wang JZ (2005) Microtubule-associated protein tau is a substrate of ATP/mg(2+)-dependent proteasome protease system. J Neural Transm (Vienna) 112(4):547–555

    Article  CAS  Google Scholar 

  52. van Eersel J, Ke Y, Gladbach A, Bi M, Götz J, Kril J et al (2011) Cytoplasmic accumulation and aggregation of TDP-43 upon proteasome inhibition in cultured neurons. PLoS One 6(7):e22850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Giannini C, Kloß A, Gohlke S, Mishto M, Nicholson T, Sheppard P et al (2013) Poly-Ub-substratedegradative activity of 26S proteasome is not impaired in the aging rat brain. PLoS One 8(5):e64042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kudo T, Iqbal K, Ravid R, Swaab DF, Grundke-Iqbal I (1994) Alzheimer disease: correlation of cerebro-spinal fluid and brain ubiquitin levels. Brain Res 639(1):1–7

    Article  CAS  PubMed  Google Scholar 

  55. Liu QY, Lei JX, Sikorska M, Liu R (2008) A novel brain-enriched E3 ubiquitin ligase RNF182 is up regulated in the brains of Alzheimer’s patients and targets ATP6V0C for degradation. Mol Neurodegener 3:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Shimura H, Schwartz D, Gygi SP, Kosik KS (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279(6):4869–4876

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Y, Dawson V, Dawson T (2001) Parkin: clinical aspects and neurobiology. Clin Neurosci Res 1(6):467–482

    Article  CAS  Google Scholar 

  58. de Vrij FM, Fischer DF, van Leeuwen FW, Hol EM (2004) Protein quality control in Alzheimer’s disease by the ubiquitin proteasome system. Prog Neurobiol 74(5):249–270

    Article  PubMed  CAS  Google Scholar 

  59. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y (1993) Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron 10(6):1151–1160

    Article  CAS  PubMed  Google Scholar 

  60. Pickart CM (2001) Ubiquitin enters the new millennium. Mol Cell 8(3):499–504

    Article  CAS  PubMed  Google Scholar 

  61. Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ (2006) Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem 281(16):10825–10838

    Article  CAS  PubMed  Google Scholar 

  62. Paine S, Bedford L, Thorpe JR, Mayer RJ, Cavey JR, Bajaj N et al (2009) Immunoreactivity to Lys63-linked polyubiquitin is a feature of neurodegeneration. Neurosci Lett 460(3):205–208

    Article  CAS  PubMed  Google Scholar 

  63. Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP et al (2008) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17(3):431–439

    Article  CAS  PubMed  Google Scholar 

  64. Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ et al (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252

    Article  PubMed  Google Scholar 

  65. Babu JR, Geetha T, Wooten MW (2005) Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 94(1):192–203

    Article  CAS  PubMed  Google Scholar 

  66. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morris M, Knudsen GM, Maeda S, Trinidad JC, Ioanoviciu A, Burlingame AL et al (2015) Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18(8):1183–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13(7):703–714

    Article  CAS  PubMed  Google Scholar 

  69. Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dickey CA, Dunmore J, Lu B, Wang JW, Lee WC, Kamal A et al (2006) HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J 20(6):753–755

    Article  CAS  PubMed  Google Scholar 

  71. Dickey CA, Yue M, Lin WL, Dickson DW, Dunmore JH, Lee WC et al (2006) Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 26(26):6985–6996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lilienbaum A (2013) Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 4(1):1–26

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L et al (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78(5):761–771

    Article  CAS  PubMed  Google Scholar 

  74. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552

    Article  CAS  PubMed  Google Scholar 

  75. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109

    Article  CAS  PubMed  Google Scholar 

  77. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM et al (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18(21):4153–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dolan PJ (2010) Johnson GV. A caspase cleaved form of tau is preferentially degraded through the autophagy pathway. J Biol Chem 285(29):21978–21987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A et al (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122

    Article  PubMed  Google Scholar 

  80. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939

    Article  CAS  PubMed  Google Scholar 

  81. Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P (2011) Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 43(1):68–78

    Article  CAS  PubMed  Google Scholar 

  82. Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ, Che S et al (2016) Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 12(12):2467–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer’s disease--locating the primary defect. Neurobiol Dis 43(1):38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wolozin B, Pruchnicki A, Dickson D, Davies P (1986) A neuronal antigen in the brains of Alzheimer patients. Science 232(4750):648–650

    Article  CAS  PubMed  Google Scholar 

  85. Uéda K, Masliah E, Saitoh T, Bakalis S, Scoble H, Kosik K (1990) Alz-50 recognizes a phosphorylated epitope of tau protein. J Neurosci 10(10):3295–3304

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ikeda K, Akiyama H, Arai T, Kondo H, Haga C, Iritani S et al (1998) Alz-50/Gallyas-positive lysosome-like intraneuronal granules in Alzheimer’s disease and control brains. Neurosci Lett 258(2):113–116

    Article  CAS  PubMed  Google Scholar 

  87. Ikeda K, Akiyama H, Arai T, Kondo H, Haga C, Tsuchiya K et al (2000) Neurons containing Alz-50-immunoreactive granules around the cerebral infarction: evidence for the lysosomal degradation of altered tau in human brain? Neurosci Lett 284(3):187–189

    Article  CAS  PubMed  Google Scholar 

  88. Piras A, Collin L, Gruninger F, Graff C, Ronnback A (2016) Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun 4:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. D’Agostino C, Nogalska A, Cacciottolo M, Engel WK, Askanas V (2011) Abnormalities of NBR1, a novel autophagy-associated protein, in muscle fibers of sporadic inclusion-body myositis. Acta Neuropathol 122(5):627–636

    Article  PubMed  CAS  Google Scholar 

  90. Caccamo A, Magri A, Medina DX, Wisely EV, Lopez-Aranda MF, Silva AJ et al (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12(3):370–380

    Article  CAS  PubMed  Google Scholar 

  91. Laplante M, Sabatini DM (2012) mTOR signaling. Cold Spring Harb Perspect Biol 4:2

    Article  CAS  Google Scholar 

  92. Garelick MG, Kennedy BK (2011) TOR on the brain. Exp Gerontol 46(2–3):155–163

    Article  CAS  PubMed  Google Scholar 

  93. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and tau: effects on cognitive impairments. J Biol Chem 285(17):13107–13120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tang Z, Ioja E, Bereczki E, Hultenby K, Li C, Guan Z et al (2015) mTor mediates tau localization and secretion: implication for Alzheimer’s disease. Biochim Biophys Acta 1853(7):1646–1657

    Article  CAS  PubMed  Google Scholar 

  95. Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C et al (2008) Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 27(5):1119–1130

    Article  PubMed  Google Scholar 

  96. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM et al (2010) Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation. Autophagy 6(1):182–183

    Article  PubMed  Google Scholar 

  97. Kim SI, Lee WK, Kang SS, Lee SY, Jeong MJ, Lee HJ et al (2011) Suppression of autophagy and activation of glycogen synthase kinase 3beta facilitate the aggregate formation of tau. Korean J Physiol Pharmacol 15(2):107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN et al (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15(3):433–442

    Article  CAS  PubMed  Google Scholar 

  99. Liu Y, Su Y, Wang J, Sun S, Wang T, Qiao X et al (2013) Rapamycin decreases tau phosphorylation at Ser214 through regulation of cAMP-dependent kinase. Neurochem Int 62(4):458–467

    Article  CAS  PubMed  Google Scholar 

  100. Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z, Breu K et al (2013) Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS One 8(5):e62459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282(8):5641–5652

    Article  CAS  PubMed  Google Scholar 

  102. Kruger U, Wang Y, Kumar S, Mandelkow EM (2012) Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 33(10):2291–2305

    Article  PubMed  CAS  Google Scholar 

  103. Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A, Perucho J et al (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 39(3):423–438

    Article  CAS  PubMed  Google Scholar 

  104. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135(Pt 7):2169–2177

    Article  PubMed  PubMed Central  Google Scholar 

  105. Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS et al (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8(4):609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16(6):345–357

    Article  CAS  PubMed  Google Scholar 

  107. Liu Z, Li T, Li P, Wei N, Zhao Z, Liang H et al (2015) The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxidative Med Cell Longev 2015:352723

    Google Scholar 

  108. Butzlaff M, Hannan SB, Karsten P, Lenz S, Ng J, Vossfeldt H et al (2015) Impaired retrograde transport by the dynein/Dynactin complex contributes to tau-induced toxicity. Hum Mol Genet 24(13):3623–3637

    Article  CAS  PubMed  Google Scholar 

  109. Majid T, Ali YO, Venkitaramani DV, Jang MK, Lu HC, Pautler RG (2014) In vivo axonal transport deficits in a mouse model of fronto-temporal dementia. Neuroimage Clin 4:711–717

    Article  PubMed  PubMed Central  Google Scholar 

  110. Inoue K, Rispoli J, Kaphzan H, Klann E, Chen EI, Kim J et al (2012) Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol Neurodegener 7:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ramesh Babu J, Lamar Seibenhener M, Peng J, Strom AL, Kemppainen R, Cox N et al (2008) Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 106(1):107–120

    Article  CAS  PubMed  Google Scholar 

  112. Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496

    Article  PubMed  CAS  Google Scholar 

  113. Collin L, Bohrmann B, Gopfert U, Oroszlan-Szovik K, Ozmen L, Gruninger F (2014) Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain 137(Pt 10):2834–2846

    Article  PubMed  Google Scholar 

  114. Perez SE, He B, Nadeem M, Wuu J, Ginsberg SD, Ikonomovic MD et al (2015) Hippocampal endosomal, lysosomal, and autophagic dysregulation in mild cognitive impairment: correlation with abeta and tau pathology. J Neuropathol Exp Neurol 74(4):345–358

    Article  PubMed  CAS  Google Scholar 

  115. Pacheco CD, Elrick MJ, Lieberman AP (2009) Tau deletion exacerbates the phenotype of Niemann-pick type C mice and implicates autophagy in pathogenesis. Hum Mol Genet 18(5):956–965

    Article  CAS  PubMed  Google Scholar 

  116. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115(6):727–738

    Article  CAS  PubMed  Google Scholar 

  117. Perez M, Santa-Maria I, Gomez de Barreda E, Zhu X, Cuadros R, Cabrero JR et al (2009) Tau--an inhibitor of deacetylase HDAC6 function. J Neurochem 109(6):1756–1766

    Article  CAS  PubMed  Google Scholar 

  118. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH et al (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28(27):6926–6937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Majumder S, Richardson A, Strong R, Oddo S (2011) Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One 6(9):e25416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rutkowski DT, Hegde RS (2010) Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol 189(5):783–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4(12):e423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Nijholt DA, de Graaf TR, van Haastert ES, Oliveira AO, Berkers CR, Zwart R et al (2011) Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer’s disease. Cell Death Differ 18(6):1071–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  CAS  PubMed  Google Scholar 

  125. Han J, Kaufman RJ (2017) Physiological/pathological ramifications of transcription factors in the unfolded protein response. Genes Dev 31(14):1417–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  127. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274

    Article  CAS  PubMed  Google Scholar 

  128. Ameri K, Harris AL (2008) Activating transcription factor 4. Int J Biochem Cell Biol 40(1):14–21

    Article  CAS  PubMed  Google Scholar 

  129. Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2(7):379–384

    Article  CAS  PubMed  Google Scholar 

  130. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M et al (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20(18):6755–6767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hetz C, Chevet E, Oakes SA (2015) Proteostasis control by the unfolded protein response. Nat Cell Biol 17(7):829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4):1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P et al (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110(2):165–172

    Article  CAS  PubMed  Google Scholar 

  134. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  135. Ehrlich M, Hallmann AL, Reinhardt P, Arauzo-Bravo MJ, Korr S, Ropke A et al (2015) Distinct neurodegenerative changes in an induced pluripotent stem cell model of Frontotemporal dementia linked to mutant TAU protein. Stem Cell Rep 5(1):83–96

    Article  CAS  Google Scholar 

  136. Loewen CA, Feany MB (2010) The unfolded protein response protects from tau neurotoxicity in vivo. PLoS One 5:9

    Article  CAS  Google Scholar 

  137. Kohler C, Dinekov M, Gotz J (2014) Granulovacuolar degeneration and unfolded protein response in mouse models of tauopathy and Abeta amyloidosis. Neurobiol Dis 71:169–179

    Article  PubMed  CAS  Google Scholar 

  138. Kohler C, Dinekov M, Gotz J (2013) Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiol Aging 34(5):1369–1379

    Article  PubMed  CAS  Google Scholar 

  139. Ho YS, Yang X, Lau JC, Hung CH, Wuwongse S, Zhang Q et al (2012) Endoplasmic reticulum stress induces tau pathology and forms a vicious cycle: implication in Alzheimer’s disease pathogenesis. J Alzheimers Dis 28(4):839–854

    Article  CAS  PubMed  Google Scholar 

  140. Abisambra JF, Jinwal UK, Blair LJ, O’Leary JC 3rd, Li Q, Brady S et al (2013) Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J Neurosci 33(22):9498–9507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Radford H, Moreno JA, Verity N, Halliday M, Mallucci GR (2015) PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol 130(5):633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kim E, Sakata K, Liao FF (2017) Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation. PLoS Genet 13(7):e1006849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Duran-Aniotz C, Cornejo VH, Espinoza S, Ardiles AO, Medinas DB, Salazar C et al (2017) IRE1 signaling exacerbates Alzheimer’s disease pathogenesis. Acta Neuropathol 134(3):489–506

    Article  CAS  PubMed  Google Scholar 

  144. Hamos JE, Oblas B, Pulaski-Salo D, Welch WJ, Bole DG, Drachman DA (1991) Expression of heat shock proteins in Alzheimer’s disease. Neurology 41(3):345–350

    Article  CAS  PubMed  Google Scholar 

  145. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y et al (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441(7092):513–517

    Article  CAS  PubMed  Google Scholar 

  146. Lee JH, Won SM, Suh J, Son SJ, Moon GJ, Park UJ et al (2010) Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp Mol Med 42(5):386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nijholt DA, van Haastert ES, Rozemuller AJ, Scheper W, Hoozemans JJ (2012) The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J Pathol 226(5):693–702

    Article  CAS  PubMed  Google Scholar 

  148. Ilieva EV, Naudi A, Kichev A, Ferrer I, Pamplona R, Portero-Otin M (2010) Depletion of oxidative and endoplasmic reticulum stress regulators in pick disease. Free Radic Biol Med 48(10):1302

    Article  CAS  PubMed  Google Scholar 

  149. Hoglinger GU, Melhem NM, Dickson DW, Sleiman PM, Wang LS, Klei L et al (2011) Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 43(7):699–705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Liu QY, Yu JT, Miao D, Ma XY, Wang HF, Wang W et al (2013) An exploratory study on STX6, MOBP, MAPT, and EIF2AK3 and late-onset Alzheimer’s disease. Neurobiol Aging 34(5):1519 e13–1519 e17

    Article  CAS  Google Scholar 

  151. Stutzbach LD, Xie SX, Naj AC, Albin R, Gilman S, Group PSPGS et al (2013) The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease. Acta Neuropathol Commun 1:31

    Article  PubMed  PubMed Central  Google Scholar 

  152. Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12(9):703–719

    Article  CAS  PubMed  Google Scholar 

  153. Maly DJ, Papa FR (2014) Druggable sensors of the unfolded protein response. Nat Chem Biol 10(11):892–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Papanikolopoulou K, Skoulakis EM (2015) Temporally distinct phosphorylations differentiate tau-dependent learning deficits and premature mortality in Drosophila. Hum Mol Genet 24(7):2065–2077

    Article  CAS  PubMed  Google Scholar 

  155. Nishimura I, Yang Y, Lu B (2004) PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116(5):671–682

    Article  CAS  PubMed  Google Scholar 

  156. Hernandez I, Luna G, Rauch J, Reis S, Giroux M, Karch C et al (2019) A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Sci Transl Med 11(485):eaat3005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  157. Cowan CM, Mudher A (2013) Are tau aggregates toxic or protective in tauopathies? Front Neurol 4:114. https://doi.org/10.3389/fneur.2013.00114.eCollection.2013

    Article  PubMed  PubMed Central  Google Scholar 

  158. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M et al (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293(5530):711–714

    Article  CAS  PubMed  Google Scholar 

  159. Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D et al (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171(2):513–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhu K, Dunner K Jr, McConkey DJ (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29(3):451–462

    Article  CAS  PubMed  Google Scholar 

  161. Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33(4):517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786

    Article  CAS  PubMed  Google Scholar 

  163. Cliffe R, Sang JC, Kundel F, Finley D, Klenerman D, Ye Y (2019) Filamentous aggregates are fragmented by the proteasome Holoenzyme. Cell Rep 26(8):2140–9 e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kim E, Park S, Lee JH, Mun JY, Choi WH, Yun Y et al (2018) Dual function of USP14 Deubiquitinase in cellular proteasomal activity and Autophagic flux. Cell Rep 24(3):732–743

    Article  CAS  PubMed  Google Scholar 

  165. Opoku-Nsiah KA, Gestwicki JE (2018) Aim for the core: suitability of the ubiquitin-independent 20S proteasome as a drug target in neurodegeneration. Transl Res 198:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC et al (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467(7312):179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jin YN, Chen PC, Watson JA, Walters BJ, Phillips SE, Green K et al (2012) Usp14 deficiency increases tau phosphorylation without altering tau degradation or causing tau-dependent deficits. PLoS One 7(10):e47884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85(16):1383–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280(45):37377–37382

    Article  CAS  PubMed  Google Scholar 

  170. Maiese K (2014) Taking aim at Alzheimer’s disease through the mammalian target of rapamycin. Ann Med 46(8):587–596

    Article  CAS  PubMed  Google Scholar 

  171. Chapin HC, Okada M, Merz AJ, Miller DL (2015) Tissue-specific autophagy responses to aging and stress in C. elegans. Aging 7(6):419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M et al (2012) Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J Neurosci 32(22):7585–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    Article  CAS  PubMed  Google Scholar 

  174. Rozpedek W, Nowak A, Pytel D, Diehl JA, Majsterek I (2017) Molecular basis of human diseases and targeted therapy based on small-molecule inhibitors of ER stress-induced Signaling pathways. Curr Mol Med 17(2):118–132

    Article  CAS  PubMed  Google Scholar 

  175. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H et al (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7(6):1153–1163

    Article  CAS  PubMed  Google Scholar 

  176. Mealer RG, Murray AJ, Shahani N, Subramaniam S, Snyder SH (2014) Rhes, a striatal-selective protein implicated in Huntington disease, binds beclin-1 and activates autophagy. J Biol Chem 289:3547–3554

    Article  CAS  PubMed  Google Scholar 

  177. Cromm PM, Samarasinghe KTG, Hines J, Crews CM (2018) Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J Am Chem Soc 140:49. https://doi.org/10.1021/jacs.8b08008

    Article  CAS  Google Scholar 

  178. Jones D, Knopman D, Graff-Radford J, Syrjanen JA, Senjem ML, Schwarz C et al (2018) In vivo (18)F-AV-1451 tau PET signal in MAPT mutation carriers varies by expected tau isoforms. Neurology 11:e947–ee54

    Article  CAS  Google Scholar 

  179. Silva M, Ferguson F, Cai Q, Donovan K, Nandi G, Patnaik D et al (2019) Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. elife 8:e45457

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for their research by:

KP: A grant from the Stavros Niarchos Foundation to the Biomedical Sciences Research Center “Alexander Fleming,” as part of the Foundation’s initiative to support the Greek research center ecosystem, Fondation Sante and ELIDEK.

EMCS: Fondation Sante and the project “Strategic Development of the Biomedical Research Institute ‘Alexander Fleming’” (MIS 5002562) which is implemented under the “Action for the Strategic Development on the Research and Technological Sector,” funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efthimios M. C. Skoulakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papanikolopoulou, K., Skoulakis, E.M.C. (2020). Altered Proteostasis in Neurodegenerative Tauopathies. In: Barrio, R., Sutherland, J., Rodriguez, M. (eds) Proteostasis and Disease . Advances in Experimental Medicine and Biology, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-38266-7_7

Download citation

Publish with us

Policies and ethics