Skip to main content

Divergent Modulation of Proteostasis in Prostate Cancer

  • Chapter
  • First Online:
Proteostasis and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1233))

Abstract

Proteostasis regulates key cellular processes such as cell proliferation, differentiation, transcription, and apoptosis. The mechanisms by which proteostasis is regulated are crucial and the deterioration of cellular proteostasis has been significantly associated with tumorigenesis since it specifically targets key oncoproteins and tumor suppressors. Prostate cancer (PCa) is the second most common cause of cancer death in men worldwide. Androgens mediate one of the most central signaling pathways in all stages of PCa via the androgen receptor (AR). In addition to their regulation by hormones, PCa cells are also known to be highly secretory and are particularly prone to ER stress as proper ER function is essential. Alterations in various complex signaling pathways and cellular processes including cell cycle control, transcription, DNA repair, apoptosis, cell adhesion, epithelial–mesenchymal transition (EMT), and angiogenesis are critical factors influencing PCa development through key molecular changes mainly by posttranslational modifications in PCa-related proteins, including AR, NKX3.1, PTEN, p53, cyclin D1, and p27. Several ubiquitin ligases like MDM2, Siah2, RNF6, CHIP, and substrate-binding adaptor SPOP; deubiquitinases such as USP7, USP10, USP26, and USP12 are just some of the modifiers involved in the regulation of these key proteins via ubiquitin–proteasome system (UPS). Some ubiquitin-like modifiers, especially SUMOs, have been also closely associated with PCa. On the other hand, the proteotoxicity resulting from misfolded proteins and failure of ER adaptive capacity induce unfolded protein response (UPR) that is an indispensable signaling mechanism for PCa development. Lastly, ER-associated degradation (ERAD) also plays a crucial role in prostate tumorigenesis. In this section, the relationship between prostate cancer and proteostasis will be discussed in terms of UPS, UPR, SUMOylation, ERAD, and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powers ET, Balch WE (2013) Diversity in the origins of proteostasis networks—a driver for protein function in evolution. Nat Rev Mol Cell Biol 14(4):237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26(4):399–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  4. Clague MJ, Heride C, Urbe S (2015) The demographics of the ubiquitin system. Trends Cell Biol 25(7):417–426

    Article  CAS  PubMed  Google Scholar 

  5. Fang S, Weissman AM (2004) A field guide to ubiquitylation. Cell Mol Life Sci 61(13):1546–1561

    Article  CAS  PubMed  Google Scholar 

  6. Metzger MB, Pruneda JN, Klevit RE, Weissman AM (2014) RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta 1843(1):47–60

    Article  CAS  PubMed  Google Scholar 

  7. Clague MJ, Urbe S (2009) Ubiquitin: same molecule, different degradation pathways. Cell 143(5):682–685

    Article  CAS  Google Scholar 

  8. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563

    Article  CAS  PubMed  Google Scholar 

  9. Pinto-Fernandez A, Kessler BM (2016) DUBbing cancer: deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets. Front Genet 7:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yuan T, Yan F, Ying M, Cao J, He Q, Zhu H, Yang B (2018) Inhibition of ubiquitin-specific proteases as a novel anticancer therapeutic strategy. Front Pharmacol 9:1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937

    Article  CAS  PubMed  Google Scholar 

  13. Mizushima N (2018) A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol 20(5):521–527

    Article  CAS  PubMed  Google Scholar 

  14. Grumati P, Dikic I (2018) Ubiquitin signaling and autophagy. J Biol Chem 293(15):5404–5413

    Article  CAS  PubMed  Google Scholar 

  15. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10(7):458–467

    Article  CAS  PubMed  Google Scholar 

  16. Gomez-Diaz C, Ikeda F (2019) Roles of ubiquitin in autophagy and cell death. Semin Cell Dev Biol 93:125–135. (18)30036-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dohmen RJ (2004) SUMO protein modification. Biochim Biophys Acta 1695(1–3):113–131

    Article  PubMed  CAS  Google Scholar 

  18. Taherbhoy AM, Schulman BA, Kaiser SE (2012) Ubiquitin-like modifiers. Essays Biochem 52:51–63

    Article  CAS  PubMed  Google Scholar 

  19. Pichler A, Fatouros C, Lee H, Eisenhardt N (2017) SUMO conjugation—a mechanistic view. Biomol Concepts 8(1):13–36

    Article  CAS  PubMed  Google Scholar 

  20. Nayak A, Muller S (2014) SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol 15(7):422

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11(12):861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sutinen P, Malinen M, Heikkinen S, Palvimo JJ (2014) SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner. Nucleic Acids Res 42(13):8310–8319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang D, Zhang DE (2011) Interferon-stimulated gene 15 and the protein ISGylation system. J Interf Cytokine Res 31(1):119–130

    Article  CAS  Google Scholar 

  24. Dos Santos PF, Mansur DS (2017) Beyond ISGlylation: functions of free intracellular and extracellular ISG15. J Interf Cytokine Res 37(6):246–253

    Article  CAS  Google Scholar 

  25. Wood LM, Pan ZK, Seavey MM, Muthukumaran G, Paterson Y (2012) The ubiquitin-like protein, ISG15, is a novel tumor-associated antigen for cancer immunotherapy. Cancer Immunol Immunother 61(5):689–700

    Article  CAS  PubMed  Google Scholar 

  26. Abidi N, Xirodimas DP (2015) Regulation of cancer-related pathways by protein NEDDylation and strategies for the use of NEDD8 inhibitors in the clinic. Endocr Relat Cancer 22(1):T55–T70

    Article  CAS  PubMed  Google Scholar 

  27. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197(7):857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12(9):703–719

    Article  CAS  PubMed  Google Scholar 

  29. Dorner AJ, Wasley LC, Kaufman RJ (1989) Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J Biol Chem 264(34):20602–20607

    CAS  PubMed  Google Scholar 

  30. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332

    Article  CAS  PubMed  Google Scholar 

  31. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, Mori K, Sadighi Akha AA, Raden D, Kaufman RJ (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4(11):e374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16(11):1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186(3):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919

    Article  CAS  PubMed  Google Scholar 

  35. Basu S, Tindall DJ (2010) Androgen action in prostate cancer. Horm Cancer 1(5):223–228

    Article  CAS  PubMed  Google Scholar 

  36. Poiani A (2006) Complexity of seminal fluid: a review. Behav Ecol Sociobiol 60(3):289–310

    Article  Google Scholar 

  37. Lilja H, Oldbring J, Rannevik G, Laurell CB (1987) Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen. J Clin Invest 80:281–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiviharju-af Hällström TM, Laiho M (2008) Genetic changes and DNA damage responses in the prostate. Prostate 68(8):902–918

    Article  CAS  Google Scholar 

  39. Alimirah F, Chen J, Basrawala Z, Xin H, Choubey D (2006) DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett 580(9):294–300

    Article  CAS  Google Scholar 

  40. Abate-Shen C, Shen MM, Gelmann E (2008) Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation 76(6):717–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mellado B, Codony J, Ribal MJ, Visa L, Gascón P (2009) Molecular biology of androgen-independent prostate cancer: the role of the androgen receptor pathway. Clin Transl Oncol 11(1):5–10

    Article  CAS  PubMed  Google Scholar 

  42. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30

    Article  PubMed  Google Scholar 

  43. Abate-Shen C, Shen MM (2000) Molecular genetics of prostate cancer. Genes Dev 14(19):2410–2434

    Article  CAS  PubMed  Google Scholar 

  44. Abate-Shen C, Banach-Petrosky WA, Sun X, Economides KD, Desai N, Gregg JP, Borowsky AD, Cardiff RD, Shen MM (2003) Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res 63(14):3886–3890

    CAS  PubMed  Google Scholar 

  45. Lei Q, Jiao J, Xin L, Chang CJ, Wang S, Gao J, Gleave ME, Witte ON, Liu X, Wu H (2006) NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9(5):367–378

    Article  CAS  PubMed  Google Scholar 

  46. Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J (2009) Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Oncogene 28(37):3307–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reddy GP, Barrack ER, Dou QP, Menon M, Pelley R, Sarkar FH, Sheng S (2006) Regulatory processes affecting androgen receptor expression, stability, and function: potential targets to treat hormone-refractory prostate cancer. J Cell Biochem 98(6):1408–1423

    Article  CAS  PubMed  Google Scholar 

  48. Voutsadakis IA, Papandreou CN (2012) The ubiquitin-proteasome system in prostate cancer and its transition to castration resistance. Urol Oncol 30(6):752–761

    Article  CAS  PubMed  Google Scholar 

  49. Shiota M, Yokomizo A, Naito S (2011) Oxidative stress and androgen receptor signaling in the development and progression of castration-resistant prostate cancer. Free Radic Biol Med 51(7):1320–1328

    Article  CAS  PubMed  Google Scholar 

  50. Karantanos T, Corn PG, Thompson TC (2013) Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32(49):5501–5511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wadosky KM, Koochekpour S (2016) Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget 7(39):64447–64470

    Article  PubMed  PubMed Central  Google Scholar 

  52. Davey RA, Grossmann M (2016) Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev 37(1):3–15

    PubMed  PubMed Central  Google Scholar 

  53. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1(1):34–45

    Article  CAS  PubMed  Google Scholar 

  54. Bennett NC et al (2010) Molecular cell biology of androgen receptor signalling. Int J Biochem Cell Biol 42(6):813–827

    Article  CAS  PubMed  Google Scholar 

  55. Nelson WG, De Marzo AM, Isaacs WB (2003) Prostate cancer. N Engl J Med 349(4):366–381

    Article  CAS  PubMed  Google Scholar 

  56. Schulz WA, Burchardt M, Cronauer MV (2003) Molecular biology of prostate cancer. Mol Hum Reprod 9(8):437–448

    Article  CAS  PubMed  Google Scholar 

  57. Huggins C (1967) Endocrine-induced regression of cancers. Cancer Res 27(11):1925–1930

    CAS  PubMed  Google Scholar 

  58. Wang YZ, Wong YC (1997) Oncogenes and tumor suppressor genes in prostate cancer: a review. Urol Oncol 3(2):41–46

    Article  CAS  PubMed  Google Scholar 

  59. Dean JL, Knudsen KE (2013) The role of tumor suppressor dysregulation in prostate cancer progression. Curr Drug Targets 14(4):460–471

    Article  CAS  PubMed  Google Scholar 

  60. Yang YA, Yu J (2013) EZH2, an epigenetic driver of prostate cancer. Protein Cell 4(5):331–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jaworski T (2006) Degradation and beyond: control of androgen receptor activity by the proteasome system. Cell Mol Biol Lett 11(1):109–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Langerak P, Russell P (2011) Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc Lond Ser B Biol Sci 366(1584):3562–3571

    Article  CAS  Google Scholar 

  63. Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM (2007) Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 120(4):719–733

    Article  CAS  PubMed  Google Scholar 

  64. Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev 23(2):175–200

    Article  CAS  PubMed  Google Scholar 

  65. Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28(7):778–808

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Xie N, Gleave ME, Rennie PS, Dong X (2015) AR-v7 protein expression is regulated by protein kinase and phosphatase. Oncotarget 6(32):33743–33754

    PubMed  PubMed Central  Google Scholar 

  67. van der Steen T, Tindall DJ, Huang H (2013) Posttranslational modification of the androgen receptor in prostate cancer. Int J Mol Sci 14(7):14833–14859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, Curtis RT, Shell BK, Bostwick DG, Tindall DJ, Gelmann EP, Abate-Shen C, Carter KC (1997) A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43(1):69–77

    Article  CAS  PubMed  Google Scholar 

  69. Xu LL, Srikantan V, Sesterhenn IA, Augustus M, Dean R, Moul JW, Carter KC, Srivastava S (2000) Expression profile of an androgen regulated prostate specific homeobox gene NKX3.1 in primary prostate cancer. J Urol 163(3):972–979

    Article  CAS  PubMed  Google Scholar 

  70. Meeks JJ, Schaeffer EM (2011) Genetic regulation of prostate development. J Androl 32(3):210–217

    Article  CAS  PubMed  Google Scholar 

  71. Singh G, Chan AM (2011) Post-translational modifications of PTEN and their potential therapeutic implications. Curr Cancer Drug Targets 11(5):536–547

    Article  CAS  PubMed  Google Scholar 

  72. Gupta A, Leslie NR (2016) Controlling PTEN (phosphatase and tensin homolog) stability: a dominant role for lysine 66. J Biol Chem 291(35):18465–18473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lotan TL, Heumann A, Rico SD, Hicks J, Lecksell K, Koop C, Sauter G, Schlomm T, Simon R (2017) PTEN loss detection in prostate cancer: comparison of PTEN immunohistochemistry and PTEN FISH in a large retrospective prostatectomy cohort. Oncotarget 8(39):65566–65576

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, Lotan TL (2018) Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 15(4):222–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shand RL, Gelmann EP (2006) Molecular biology of prostate-cancer pathogenesis. Curr Opin Urol 16(3):123–131

    Article  PubMed  Google Scholar 

  76. Nyquist MD, Dehm SM (2013) Interplay between genomic alterations and androgen receptor signaling during prostate cancer development and progression. Horm Cancer 4(2):61–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jiang A, Yu C, Zhang P, Chen W, Liu W, Hu X, Zhang J (2006) p53 overexpression represses androgen-mediated induction of NKX3.1 in a prostate cancer cell line. Exp Mol Med 38(6):625–633

    Article  CAS  PubMed  Google Scholar 

  78. Garcia JA, Rini BI (2012) Castration-resistant prostate cancer: many treatments, many options, many challenges ahead. Cancer 118(10):2583–2593

    Article  PubMed  Google Scholar 

  79. Lee DK, Chang C (2003) Endocrine mechanisms of disease: expression and degradation of androgen receptor: mechanism and clinical implication. J Clin Endocrinol Metab 88(9):4043–4054

    Article  CAS  PubMed  Google Scholar 

  80. McEwan IJ (2004) Molecular mechanisms of androgen receptor-mediated gene regulation: structure-function analysis of the AF-1 domain. Endocr Relat Cancer 11(2):281–293

    Article  CAS  PubMed  Google Scholar 

  81. Grossmann ME, Huang H, Tindall DJ (2001) Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 93(22):1687–1697

    Article  CAS  PubMed  Google Scholar 

  82. Gray IC, Stewart LM, Phillips SM, Hamilton JA, Gray NE, Watson GJ, Spurr NK, Snary D (1998) Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN. Br J Cancer 78(10):1296–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, Khoo AS, Roy-Burman P, Greenberg NM, Van Dyke T, Cordon-Cardo C, Pandolfi PP (2003) Pten dose dictates cancer progression in the prostate. PLoS Biol 1(3):E59

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nelson WG, DeWeese TL, DeMarzo AM (2002) The diet, prostate inflammation, and the development of prostate cancer. Cancer Metastasis Rev 21(1):3–16

    Article  CAS  PubMed  Google Scholar 

  85. Voeller HJ, Augustus M, Madike V, Bova GS, Carter KC, Gelmann EP (1997) Coding region of NKX3.1, a prostate-specific homeobox gene on 8p21, is not mutated in human prostate cancers. Cancer Res 57(20):4455–4459

    CAS  PubMed  Google Scholar 

  86. Bieberich CJ, Fujita K, He WW, Jay G (1996) Prostate-specific and androgen-dependent expression of a novel homeobox gene. J Biol Chem 271(50):31779–31782

    Article  CAS  PubMed  Google Scholar 

  87. Suh J, Payvandi F, Edelstein LC, Amenta PS, Zong WX, Gélinas C, Rabson AB (2002) Mechanisms of constitutive NF-kappaB activation in human prostate cancer cells. Prostate 52(3):183–200

    Article  CAS  PubMed  Google Scholar 

  88. Gan W, Dai X, Lunardi A, Li Z, Inuzuka H, Liu P, Varmeh S, Zhang J, Cheng L, Sun Y, Asara JM, Beck AH, Huang J, Pandolfi PP, Wei W (2015) SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol Cell 59(6):917–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W (2001) Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA 98(9):5043–5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang G, Ayala G, De Marzo A, Tian W, Frolov A, Wheeler TM, Thompson TC, Harper JW (2002) Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res 8(11):3419–3426

    CAS  PubMed  Google Scholar 

  91. Shim EH, Johnson L, Noh HL, Kim YJ, Sun H, Zeiss C, Zhang H (2003) Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res 63(7):1583–1588

    CAS  PubMed  Google Scholar 

  92. Lu L, Schulz H, Wolf DA (2002) The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol 3:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5(9):739–751

    Article  CAS  PubMed  Google Scholar 

  94. Wang Z, Gao D, Fukushima H, Inuzuka H, Liu P, Wan L, Sarkar FH, Wei W (2012) Skp2: a novel potential therapeutic target for prostate cancer. Biochim Biophys Acta 1825(1):11–17

    CAS  PubMed  Google Scholar 

  95. Arbini AA, Greco M, Yao JL, Bourne P, Marra E, Hsieh JT, di Sant’agnese PA, Moro L (2011) Skp2 overexpression is associated with loss of BRCA2 protein in human prostate cancer. Am J Pathol 178(5):2367–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tsai YS, Lai CL, Lai CH, Chang KH, Wu K, Tseng SF, Fazli L, Gleave M, Xiao G, Gandee L, Sharifi N, Moro L, Tzai TS, Hsieh JT (2014) The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget 5(15):6425–6436

    Article  PubMed  PubMed Central  Google Scholar 

  97. Duggan D, Zheng SL, Knowlton M, Benitez D, Dimitrov L, Wiklund F, Robbins C, Isaacs SD, Cheng Y, Li G, Sun J, Chang BL, Marovich L, Wiley KE, Bälter K, Stattin P, Adami HO, Gielzak M, Yan G, Sauvageot J, Liu W, Kim JW, Bleecker ER, Meyers DA, Trock BJ, Partin AW, Walsh PC, Isaacs WB, Grönberg H, Xu J, Carpten JD (2007) Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 99(24):1836–1844

    Article  CAS  PubMed  Google Scholar 

  98. van Duijn PW, Trapman J (2006) PI3K/Akt signaling regulates p27(kip1) expression via Skp2 in PC3 and DU145 prostate cancer cells, but is not a major factor in p27(kip1) regulation in LNCaP and PC346 cells. Prostate 66(7):749–760

    Article  PubMed  CAS  Google Scholar 

  99. Jiang J, Pan Y, Regan KM, Wu C, Zhang X, Tindall DJ, Huang H (2012) Androgens repress expression of the F-box protein Skp2 via p107 dependent and independent mechanisms in LNCaP prostate cancer cells. Prostate 72(2):225–232

    Article  CAS  PubMed  Google Scholar 

  100. Pernicová Z, Slabáková E, Kharaishvili G, Bouchal J, Král M, Kunická Z, Machala M, Kozubík A, Souček K (2011) Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia 13(6):526–536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Wang H, Sun D, Ji P, Mohler J, Zhu L (2008) An AR-Skp2 pathway for proliferation of androgen-dependent prostate-cancer cells. J Cell Sci 121(Pt 15):2578–2587

    Article  CAS  PubMed  Google Scholar 

  102. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005) ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121(7):1071–1083

    Article  CAS  PubMed  Google Scholar 

  103. Raghu D, Paul PJ, Gulati T, Deb S, Khoo C, Russo A, Gallo E, Blandino G, Chan AL, Takano E, Sandhu SK, Fox SB, Williams S, Haupt S, Gamell C, Haupt Y (2017) E6AP promotes prostate cancer by reducing p27 expression. Oncotarget 8(26):42939–42948

    Article  PubMed  PubMed Central  Google Scholar 

  104. Qi J, Tripathi M, Mishra R, Sahgal N, Fazli L, Ettinger S, Placzek WJ, Claps G, Chung LW, Bowtell D, Gleave M, Bhowmick N, Ronai ZA (2013) The E3 ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity. Cancer Cell 23(3):332–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Qi J, Fan L, Hussain A (2015) Implications of ubiquitin ligases in castration-resistant prostate cancer. Curr Opin Oncol 27(3):172–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Geng C, Rajapakshe K, Shah SS, Shou J, Eedunuri VK, Foley C, Fiskus W, Rajendran M, Chew SA, Zimmermann M, Bond R, He B, Coarfa C, Mitsiades N (2014) Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer Res 74(19):5631–5643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Qi J, Pellecchia M, Ronai ZZA (2010) The Siah2-HIF-FoxA2 axis in prostate cancer—new markers and therapeutic opportunities. Oncotarget 1(5):379–385

    Article  PubMed  PubMed Central  Google Scholar 

  108. An J, Wang C, Deng Y, Yu L, Huang H (2014) Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep 6(4):657–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Geng C, He B, Xu L, Barbieri CE, Eedunuri VK, Chew SA, Zimmermann M, Bond R, Shou J, Li C, Blattner M, Lonard DM, Demichelis F, Coarfa C, Rubin MA, Zhou P, O’Malley BW, Mitsiades N (2013) Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci USA 110(17):6997–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang P, Gao K, Tang Y, Jin X, An J, Yu H, Wang H, Zhang Y, Wang D, Huang H, Yu L, Wang C (2014) Destruction of DDIT3/CHOP protein by wild-type SPOP but not prostate cancer-associated mutants. Hum Mutat 35(9):1142–1151

    Article  CAS  PubMed  Google Scholar 

  111. Fong KW, Zhao JC, Song B, Zheng B, Yu J (2018) TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun 9(1):5007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Theurillat JP, Udeshi ND, Errington WJ, Svinkina T, Baca SC, Pop M, Wild PJ, Blattner M, Groner AC, Rubin MA, Moch H, Prive GG, Carr SA, Garraway LA (2014) Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science 346(6205):85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhu H, Ren S, Bitler BG, Aird KM, Tu Z, Skordalakes E, Zhu Y, Yan J, Sun Y, Zhang R (2015) SPOP E3 ubiquitin ligase adaptor promotes cellular senescence by degrading the SENP7 deSUMOylase. Cell Rep 13(6):1183–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang L, Peng S, Dai X, Gan W, Nie X, Wei W, Hu G, Guo J (2017) Tumor suppressor SPOP ubiquitinates and degrades EglN2 to compromise growth of prostate cancer cells. Cancer Lett 390:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ma J, Chang K, Peng J, Shi Q, Gan H, Gao K, Feng K, Xu F, Zhang H, Dai B, Zhu Y, Shi G, Shen Y, Zhu Y, Qin X, Li Y, Zhang P, Ye D, Wang C (2018) SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression. J Exp Clin Cancer Res 37(1):145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Geng C, Kaochar S, Li M, Rajapakshe K, Fiskus W, Dong J, Foley C, Dong B, Zhang L, Kwon OJ, Shah SS, Bolaki M, Xin L, Ittmann M, O’Malley BW, Coarfa C, Mitsiades N (2017) SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein. Oncogene 36(33):4767–4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gang X, Xuan L, Zhao X, Lv Y, Li F, Wang Y, Wang G (2019) Speckle-type POZ protein suppresses lipid accumulation and prostate cancer growth by stabilizing fatty acid synthase. Prostate 79(8):864–871

    Article  CAS  PubMed  Google Scholar 

  118. Liu C, Lou W, Yang JC, Liu L, Armstrong CM, Lombard AP, Zhao R, Noel ODV, Tepper CG, Chen HW, Dall’Era M, Evans CP, Gao AC (2018) Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun 9(1):4700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Sarkar S, Brautigan DL, Parsons SJ, Larner JM (2014) Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene 33(1):26–33

    Article  CAS  PubMed  Google Scholar 

  120. Zhang HT, Zeng LF, He QY, Tao WA, Zha ZG, Hu CD (2016) The E3 ubiquitin ligase CHIP mediates ubiquitination and proteasomal degradation of PRMT5. Biochim Biophys Acta 1863(2):335–346

    Article  CAS  PubMed  Google Scholar 

  121. Cohen M, Amir S, Golan M, Ben-Neriah Y, Mabjeesh NJ (2019) beta-TrCP upregulates HIF-1 in prostate cancer cells. Prostate 79(4):403–413

    Article  CAS  PubMed  Google Scholar 

  122. Li H, Mohamed AA, Sharad S, Umeda E, Song Y, Young D, Petrovics G, McLeod DG, Sesterhenn IA, Sreenath T, Dobi A, Srivastava S (2015) Silencing of PMEPA1 accelerates the growth of prostate cancer cells through AR, NEDD4 and PTEN. Oncotarget 6(17):15137–15149

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wang X, Jiang X (2008) Post-translational regulation of PTEN. Oncogen 27(41):5454–5463

    Article  CAS  Google Scholar 

  124. Fukushima T, Yoshihara H, Furuta H, Kamei H, Hakuno F, Luan J, Duan C, Saeki Y, Tanaka K, Iemura S, Natsume T, Chida K, Nakatsu Y, Kamata H, Asano T, Takahashi S (2015) Nedd4-induced monoubiquitination of IRS-2 enhances IGF signalling and mitogenic activity. Nat Commun 6:6780

    Article  CAS  PubMed  Google Scholar 

  125. Tan M, Xu J, Siddiqui J, Feng F, Sun Y (2016) Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis. Mol Cancer 15(1):81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Xiao Y, Jiang Y, Song H, Liang T, Li Y, Yan D, Fu Q, Li Z (2017) RNF7 knockdown inhibits prostate cancer tumorigenesis by inactivation of ERK1/2 pathway. Sci Rep 7:43683

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ito S, Ueno A, Ueda T, Nakagawa H, Taniguchi H, Kayukawa N, Fujihara-Iwata A, Hongo F, Okihara K, Ukimura O (2018) CNPY2 inhibits MYLIP-mediated AR protein degradation in prostate cancer cells. Oncotarget 9(25):17645–17655

    PubMed  PubMed Central  Google Scholar 

  128. Markowski MC, Bowen C, Gelmann EP (2008) Inflammatory cytokines induce phosphorylation and ubiquitination of prostate suppressor protein NKX3.1. Cancer Res 68(17):6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guan B, Pungaliya P, Li X, Uquillas C, Mutton LN, Rubin EH, Bieberich CJ (2008) Ubiquitination by TOPORS regulates the prostate tumor suppressor NKX3.1. J Biol Chem 283(8):4834–4840

    Article  CAS  PubMed  Google Scholar 

  130. Frescas D, Pagano M (2008) Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8(6):438–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shrestha H, Yuan T, He Y, Moon PG, Shrestha N, Ryu T, Park SY, Cho YC, Lee CH, Baek MC, Cho S, Simkhada S, Kim H, Kim K (2016) Investigation of the molecular mechanism of delta-catenin ubiquitination: implication of beta-TrCP-1 as a potential E3 ligase. Biochim Biophys Acta 1863(9):2311–2321

    Article  CAS  PubMed  Google Scholar 

  132. Bhatia N, Thiyagarajan S, Elcheva I, Saleem M, Dlugosz A, Mukhtar H, Spiegelman VS (2006) Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J Biol Chem 281(28):19320–19326

    Article  CAS  PubMed  Google Scholar 

  133. Svensson C, Ceder J, Iglesias-Gato D, Chuan YC, Pang ST, Bjartell A, Martinez RM, Bott L, Helczynski L, Ulmert D, Wang Y, Niu Y, Collins C, Flores-Morales A (2014) REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. Nucleic Acids Res 42(2):999–1015

    Article  CAS  PubMed  Google Scholar 

  134. Xu K, Shimelis H, Linn DE, Jiang R, Yang X, Sun F, Guo Z, Chen H, Li W, Chen H, Kong X, Melamed J, Fang S, Xiao Z, Veenstra TD, Qiu Y (2009) Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell 15(4):270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhi X, Zhao D, Wang Z, Zhou Z, Wang C, Chen W, Liu R, Chen C (2013) E3 ubiquitin ligase RNF126 promotes cancer cell proliferation by targeting the tumor suppressor p21 for ubiquitin-mediated degradation. Cancer Res 73(1):385–394

    Article  CAS  PubMed  Google Scholar 

  136. Wang X, Lu G, Li L, Yi J, Yan K, Wang Y, Zhu B, Kuang J, Lin M, Zhang S, Shao G (2014) HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 444(3):290–295

    Article  CAS  PubMed  Google Scholar 

  137. Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, Guillemot F, Iavarone A, Lasorella A (2008) The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol 10(6):643–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Inoue S, Hao Z, Elia AJ, Cescon D, Zhou L, Silvester J, Snow B, Harris IS, Sasaki M, Li WY, Itsumi M, Yamamoto K, Ueda T, Dominguez-Brauer C, Gorrini C, Chio II, Haight J, You-Ten A, McCracken S, Wakeham A, Ghazarian D, Penn LJ, Melino G, Mak TW (2013) Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. Genes Dev 27(10):1101–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Qu H, Liu H, Jin Y, Cui Z, Han G (2018) HUWE1 upregulation has tumor suppressive effect in human prostate cancer cell lines through c-Myc. Biomed Pharmacother 106:309–315

    Article  CAS  PubMed  Google Scholar 

  140. Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, Ogino S, Farsetti A, Porrello A, Finn S, Zimmermann J, Febbo P, Loda M (2006) The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res 66(17):8625–8632

    Article  CAS  PubMed  Google Scholar 

  141. Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S, Loda M (2004) Cancer Cell 5(3):253–261

    Article  CAS  PubMed  Google Scholar 

  142. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK (2007) The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 26(4):976–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shan J, Zhao W, Gu W (2009) Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell 36(3):469–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shi Y, Solomon LR, Pereda-Lopez A, Giranda VL, Luo Y, Johnson EF, Shoemaker AR, Leverson J, Liu X (2011) Ubiquitin-specific cysteine protease 2a (USP2a) regulates the stability of Aurora-A. J Biol Chem 286(45):38960–38968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455(7214):813–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen ST, Okada M, Nakato R, Izumi K, Bando M, Shirahige K (2015) The deubiquitinating enzyme USP7 regulates androgen receptor activity by modulating its binding to chromatin. J Biol Chem 290(35):21713–21723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sacco JJ, Coulson JM, Clague MJ, Urbé S (2010) Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62(2):140–157

    CAS  PubMed  PubMed Central  Google Scholar 

  148. van der Horst A, de Vries-Smits AM, Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM, Burgering BM (2006) FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8(10):1064–1073

    Article  PubMed  CAS  Google Scholar 

  149. Liu Y, Xu X, Lin P, He Y, Zhang Y, Cao B, Zhang Z, Sethi G, Liu J, Zhou X, Mao X (2019) Inhibition of the deubiquitinase USP9x induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis. J Biol Chem 294(12):4572–4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang S, Kollipara RK, Srivastava N, Li R, Ravindranathan P, Hernandez E, Freeman E, Humphries CG, Kapur P, Lotan Y, Fazli L, Gleave ME, Plymate SR, Raj GV, Hsieh JT, Kittler R (2014) Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer. Proc Natl Acad Sci USA 111(11):4251–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Furuta H, Yoshihara H, Fukushima T, Yoneyama Y, Ito A, Worrall C, Girnita A, Girnita L, Yoshida M, Asano T, Komada M, Kataoka N, Chida K, Hakuno F, Takahashi SI (2018) IRS-2 deubiquitination by USP9X maintains anchorage-independent cell growth via Erk1/2 activation in prostate carcinoma cell line. Oncotarget 9(74):33871–33883

    Article  PubMed  PubMed Central  Google Scholar 

  152. Draker R, Sarcinella E, Cheung P (2011) USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation. Nucleic Acids Res 39(9):3529–3542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Myung JK, Sadar MD (2012) Large scale phosphoproteome analysis of LNCaP human prostate cancer cells. Mol BioSyst 8(8):2174–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Takayama KI, Suzuki T, Fujimura T, Takahashi S, Inoue S (2018) Association of USP10 with G3BP2 inhibits p53 signaling and contributes to poor outcome in prostate cancer. Mol Cancer Res 16(5):846–856

    Article  CAS  PubMed  Google Scholar 

  155. Dryhurst D, Ausio J (2014) Histone H2A.Z deregulation in prostate cancer. Cause or effect? Cancer Metastasis Rev 33(23):429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Takayama KI, Suzuki T, Fujimura T, Takahashi S, Inoue S (2005) The ubiquitin-specific protease USP10 modulates androgen receptor function. Mol Cell Endocrinol 245(1-2):138–146

    Article  CAS  Google Scholar 

  157. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z (2010) USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140(3):384–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Burska UL, Harle VJ, Coffey K, Darby S, Ramsey H, O’Neill D, Logan IR, Gaughan L, Robson CN (2013) Deubiquitinating enzyme Usp12 is a novel co-activator of the androgen receptor. J Biol Chem 288(45):32641–32650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. McClurg UL, Summerscales EE, Harle VJ, Gaughan L, Robson CN (2014) Deubiquitinating enzyme Usp12 regulates the interaction between the androgen receptor and the Akt pathway. Oncotarget 5(16):7081–7092

    Article  PubMed  PubMed Central  Google Scholar 

  160. McClurg UL, Chit NCTH, Azizyan M, Edwards J, Nabbi A, Riabowol KT, Nakjang S, McCracken SR, Robson CN (2018) Molecular mechanism of the TP53-MDM2-AR-AKT signalling network regulation by USP12. Oncogene 37(34):4679–4691

    Article  CAS  PubMed  Google Scholar 

  161. Liao Y, Liu N, Hua X, Cai J, Xia X, Wang X, Huang H, Liu J (2017) Proteasome-associated deubiquitinase ubiquitin-specific protease 14 regulates prostate cancer proliferation by deubiquitinating and stabilizing androgen receptor. Cell Death Dis 8(2):e2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu N, Guo Z, Xia X, Liao Y, Zhang F, Huang C, Liu Y, Deng X, Jiang L, Wang X, Liu J, Huang H (2019) Auranofin lethality to prostate cancer includes inhibition of proteasomal deubiquitinases and disrupted androgen receptor signaling. Eur J Pharmacol 846:1–11

    Article  CAS  PubMed  Google Scholar 

  163. Fukushima T, Yoshihara H, Furuta H, Hakuno F, Iemura SI, Natsume T, Nakatsu Y, Kamata H, Asano T, Komada M, Takahashi SI (2017) USP15 attenuates IGF-I signaling by antagonizing Nedd4-induced IRS-2 ubiquitination. Biochem Biophys Res Commun 484(3):522–528

    Article  CAS  PubMed  Google Scholar 

  164. Dirac AM, Bernards R (2010) The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling. Mol Cancer Res 8(6):844–854

    Article  CAS  PubMed  Google Scholar 

  165. Vummidi Giridhar P, Williams K, VonHandorf AP, Deford PL, Kasper S (2019) Constant degradation of the androgen receptor by MDM2 conserves prostate cancer stem cell integrity. Cancer Res 79(6):1124–1137

    Article  PubMed  Google Scholar 

  166. Tanner T, Claessens F, Haelens A (2004) The hinge region of the androgen receptor plays a role in proteasome-mediated transcriptional activation. Ann N Y Acad Sci 1030:587–592

    Article  CAS  PubMed  Google Scholar 

  167. Linn DE, Yang X, Xie Y, Alfano A, Deshmukh D, Wang X, Shimelis H, Chen H, Li W, Xu K, Chen M, Qiu Y (2012) Differential regulation of androgen receptor by PIM-1 kinases via phosphorylation-dependent recruitment of distinct ubiquitin E3 ligases. J Biol Chem 287(27):22959–22968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu T, Li Y, Gu H, Zhu G, Li J, Cao L, Li F (2013) p21-Activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2). J Biol Chem 288(5):3359–3369

    Article  CAS  PubMed  Google Scholar 

  169. Knauer SK, Mahendrarajah N, Roos WP, Krämer OH (2015) The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine Growth Factor Rev 26(4):405–413

    Article  CAS  PubMed  Google Scholar 

  170. Qi J, Kim H, Scortegagna M, Ronai ZA (2013) Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys 67(1):15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jing Y, Nguyen MM, Wang D, Pascal LE, Guo W, Xu Y, Ai J, Deng FM, Masoodi KZ, Yu X, Zhang J, Nelson JB, Xia S, Wang Z (2018) DHX15 promotes prostate cancer progression by stimulating Siah2-mediated ubiquitination of androgen receptor. Oncogene 37(5):638–650

    Article  CAS  PubMed  Google Scholar 

  172. Fan L, Peng G, Hussain A, Fazli L, Guns E, Gleave M, Qi J (2015) The steroidogenic enzyme akr1c3 regulates stability of the ubiquitin ligase Siah2 in prostate cancer cells. J Biol Chem 290(34):20865–20879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, Asangani IA, Ateeq B, Chun SY, Siddiqui J, Sam L, Anstett M, Mehra R, Prensner JR, Palanisamy N, Ryslik GA, Vandin F, Raphael BJ, Kunju LP, Rhodes DR, Pienta KJ, Chinnaiyan AM, Tomlins SA (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406):239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, Nickerson E, Chae SS, Boysen G, Auclair D, Onofrio RC, Park K, Kitabayashi N, MacDonald TY, Sheikh K, Vuong T, Guiducci C, Cibulskis K, Sivachenko A, Carter SL, Saksena G, Voet D, Hussain WM, Ramos AH, Winckler W, Redman MC, Ardlie K, Tewari AK, Mosquera JM, Rupp N, Wild PJ, Moch H, Morrissey C, Nelson PS, Kantoff PW, Gabriel SB, Golub TR, Meyerson M, Lander ES, Getz G, Rubin MA, Garraway LA (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44(6):685–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Masuda K, Werner T, Maheshwari S, Frisch M, Oh S, Petrovics G, May K, Srikantan V, Srivastava S, Dobi A (2005) Androgen receptor binding sites identified by a GREF_GATA model. J Mol Biol 353(4):763–771

    Article  CAS  PubMed  Google Scholar 

  176. Li H, Xu LL, Masuda K, Raymundo E, McLeod DG, Dobi A, Srivastava S (2008) A feedback loop between the androgen receptor and a NEDD4-binding protein, PMEPA1, in prostate cancer cells. J Biol Chem 283(43):28988–28995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Macri E, Loda M (1998) Role of p27 in prostate carcinogenesis. Cancer Metastasis Rev 17(4):337–344

    Article  CAS  PubMed  Google Scholar 

  178. Ben-Izhak O, Lahav-Baratz S, Meretyk S, Ben-Eliezer S, Sabo E, Dirnfeld M, Cohen S, Ciechanover A (2003) Inverse relationship between Skp2 ubiquitin ligase and the cyclin dependent kinase inhibitor p27Kip1 in prostate cancer. J Urol 170(1):241–245

    Article  CAS  PubMed  Google Scholar 

  179. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Planchon SM, Waite KA, Eng C (2008) The nuclear affairs of PTEN. J Cell Sci 121(Pt 3):249–253

    Article  CAS  PubMed  Google Scholar 

  181. Kuchay S, Giorgi C, Simoneschi D, Pagan J, Missiroli S, Saraf A, Florens L, Washburn MP, Collazo-Lorduy A, Castillo-Martin M, Cordon-Cardo C, Sebti SM, Pinton P, Pagano M (2017) PTEN counteracts FBXL2 to promote IP3R3- and Ca(2+)-mediated apoptosis limiting tumour growth. Nature 546(7659):554–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Song MS, Carracedo A, Salmena L, Song SJ, Egia A, Malumbres M, Pandolfi PP (2011) Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell 144(2):187–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bethel CR, Faith D, Li X, Guan B, Hicks JL, Lan F, Jenkins RB, Bieberich CJ, De Marzo AM (2006) Decreased NKX3.1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia, and adenocarcinoma: association with Gleason score and chromosome 8p deletion. Cancer Res 66(22):10683–10690

    Article  CAS  PubMed  Google Scholar 

  184. Zhou J, Qin L, Tien JC, Gao L, Chen X, Wang F, Hsieh JT, Xu J (2012) Nkx3.1 functions as para-transcription factor to regulate gene expression and cell proliferation in non-cell autonomous manner. J Biol Chem 287(21):17248–17256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kim MJ, Bhatia-Gaur R, Banach-Petrosky WA, Desai N, Wang Y, Hayward SW, Cunha GR, Cardiff RD, Shen MM, Abate-Shen C (2002) Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res 62(11):2999–3004

    CAS  PubMed  Google Scholar 

  186. Li X, Guan B, Maghami S, Bieberich CJ (2006) NKX3.1 is regulated by protein kinase CK2 in prostate tumor cells. Mol Cell Biol 26(8):3008–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Padmanabhan A, Rao V, De Marzo AM, Bieberich CJ (2016) Regulating NKX3.1 stability and function: post-translational modifications and structural determinants. Prostate 76(6):523–533

    Article  CAS  PubMed  Google Scholar 

  188. Iglesias-Gato D, Chuan YC, Wikström P, Augsten S, Jiang N, Niu Y, Seipel A, Danneman D, Vermeij M, Fernandez-Perez L, Jenster G, Egevad L, Norstedt G, Flores-Morales A (2014) SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer. Carcinogenesis 35(1):24–33

    Article  CAS  PubMed  Google Scholar 

  189. Paul I, Batth TS, Iglesias-Gato D, Al-Araimi A, Al-Haddabi I, Alkharusi A, Norstedt G, Olsen JV, Zadjali F, Flores-Morales A (2017) The ubiquitin ligase Cullin5(SOCS2) regulates NDR1/STK38 stability and NF-kappaB transactivation. Sci Rep 7:42800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hoefer J, Kern J, Ofer P, Eder IE, Schäfer G, Dietrich D, Kristiansen G, Geley S, Rainer J, Gunsilius E, Klocker H, Culig Z, Puhr M (2014) SOCS2 correlates with malignancy and exerts growth-promoting effects in prostate cancer. Endocr Relat Cancer 21(2):175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Rebello RJ, Pearson RB, Hannan RD, Furic L (2017) Therapeutic approaches targeting MYC-driven prostate cancer. Genes (Basel) 8(2):E71

    Article  CAS  Google Scholar 

  192. Kao SH, Wu HT, Wu K (2018) Ubiquitination by HUWE1 in tumorigenesis and beyond. J Biomed Sci 25(1):67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R, Thomas GV, Sawyers CL (2003) Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4(3):223–238

    Article  CAS  PubMed  Google Scholar 

  194. Fan L, Peng G, Sahgal N, Fazli L, Gleave M, Zhang Y, Hussain A, Qi J (2016) Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene 35(19):2441–2452

    Article  CAS  PubMed  Google Scholar 

  195. Wang S, Kollipara RK, Humphries CG, Ma SH, Hutchinson R, Li R, Siddiqui J, Tomlins SA, Raj GV, Kittler R (2016) The ubiquitin ligase TRIM25 targets ERG for degradation in prostate cancer. Oncotarget 7(40):64921–64931

    PubMed  PubMed Central  Google Scholar 

  196. Miyajima N, Maruyama S, Bohgaki M, Kano S, Shigemura M, Shinohara N, Nonomura K, Hatakeyama S (2008) TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells. Cancer Res 68(9):3486–3494

    Article  CAS  PubMed  Google Scholar 

  197. Wang Z, Wang J, Li X, Xing L, Ding Y, Shi P, Zhang Y, Guo S, Shu X, Shan B (2014) Bortezomib prevents oncogenesis and bone metastasis of prostate cancer by inhibiting WWP1, Smurf1 and Smurf2. Int J Oncol 45(4):1469–1478

    Article  CAS  PubMed  Google Scholar 

  198. Ahmed F, Shiraishi T, Vessella RL, Kulkarni P (2013) Tumor necrosis factor receptor associated factor-4: an adapter protein overexpressed in metastatic prostate cancer is regulated by microRNA-29a. Oncol Rep 30(6):2963–2968

    Article  CAS  PubMed  Google Scholar 

  199. Singh R, Karri D, Shen H, Shao J, Dasgupta S, Huang S, Edwards DP, Ittmann MM, O’Malley BW, Yi P (2018) TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. J Clin Invest 128(7):3129–3143

    Article  PubMed  PubMed Central  Google Scholar 

  200. Hamidi A, Song J, Thakur N, Itoh S, Marcusson A, Bergh A, Heldin CH, Landström M (2017) TGF-beta promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85alpha. Sci Signal 10(486):eaal4186

    Article  PubMed  CAS  Google Scholar 

  201. Zaarour RF, Chirivino D, Del Maestro L, Daviet L, Atfi A, Louvard D, Arpin M (2012) Ezrin ubiquitylation by the E3 ubiquitin ligase, WWP1, and consequent regulation of hepatocyte growth factor receptor activity. PLoS One 7(5):e37490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gang X, Wang G, Huang H (2015) Androgens regulate SMAD ubiquitination regulatory factor-1 expression and prostate cancer cell invasion. Prostate 75(6):561–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. McClurg UL, Harle VJ, Nabbi A, Batalha-Pereira A, Walker S, Coffey K, Gaughan L, McCracken SR, Robson CN (2015) Ubiquitin-specific protease 12 interacting partners Uaf-1 and WDR20 are potential therapeutic targets in prostate cancer. Oncotarget 6(35):37724–37736

    Article  PubMed  PubMed Central  Google Scholar 

  204. Cai J, Xia X, Liao Y, Liu N, Guo Z, Chen J, Yang L, Long H, Yang Q, Zhang X, Xiao L, Wang X, Huang H, Liu J (2017) A novel deubiquitinase inhibitor b-AP15 triggers apoptosis in both androgen receptor-dependent and -independent prostate cancers. Oncotarget 8(38):63232–63246

    Article  PubMed  PubMed Central  Google Scholar 

  205. Liao Y, Xia X, Liu N, Cai J, Guo Z, Li Y, Jiang L, Dou QP, Tang D, Huang H, Liu J (2018) Growth arrest and apoptosis induction in androgen receptor-positive human breast cancer cells by inhibition of USP14-mediated androgen receptor deubiquitination. Oncogene 37(14):1896–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Benassi B, Flavin R, Marchionni L, Zanata S, Pan Y, Chowdhury D, Marani M, Strano S, Muti P, Blandino G, Loda M (2012) MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov 2(3):236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Huang Y, Pan XW, Li L, Chen L, Liu X, Lu JL, Zhu XM, Huang H, Yang QW, Ye JQ, Gan SS, Wang LH, Hong Y, Xu DF, Cui XG (2016) Overexpression of USP39 predicts poor prognosis and promotes tumorigenesis of prostate cancer via promoting EGFR mRNA maturation and transcription elongation. Oncotarget 7(16):22016–22030

    PubMed  PubMed Central  Google Scholar 

  208. Ummanni R, Jost E, Braig M, Lohmann F, Mundt F, Barett C, Schlomm T, Sauter G, Senff T, Bokemeyer C, SĂĽltmann H, Meyer-Schwesinger C, BrĂĽmmendorf TH, Balabanov S (2011) Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation. Mol Cancer 10:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Poukka H, Aarnisalo P, Karvonen U, Palvimo JJ, Jänne OA (1999) Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J Biol Chem 274(27):19441–19446

    Article  CAS  PubMed  Google Scholar 

  210. Rytinki M, Kaikkonen S, Sutinen P, Paakinaho V, Rahkama V, Palvimo JJ (2012) Dynamic SUMOylation is linked to the activity cycles of androgen receptor in the cell nucleus. Mol Cell Biol 32(20):4195–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hoefer J, Schäfer G, Klocker H, Erb HH, Mills IG, Hengst L, Puhr M, Culig Z (2012) PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21. Am J Pathol 180(5):2097–2107

    Article  CAS  PubMed  Google Scholar 

  212. Moschos SJ, Jukic DM, Athanassiou C, Bhargava R, Dacic S, Wang X, Kuan SF, Fayewicz SL, Galambos C, Acquafondata M, Dhir R, Becker D (2010) Expression analysis of Ubc9, the single small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues. Hum Pathol 41(9):1286–1298

    Article  CAS  PubMed  Google Scholar 

  213. Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, Jänne OA, Palvimo JJ (2015) SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res 43(2):848–861

    Article  CAS  PubMed  Google Scholar 

  214. Puhr M, Hoefer J, Eigentler A, Dietrich D, van Leenders G, Uhl B, Hoogland M, Handle F, Schlick B, Neuwirt H, Sailer V, Kristiansen G, Klocker H, Culig Z (2016) PIAS1 is a determinant of poor survival and acts as a positive feedback regulator of AR signaling through enhanced AR stabilization in prostate cancer. Oncogene 35(18):2322–2332

    Article  CAS  PubMed  Google Scholar 

  215. Sutinen P, Rahkama V, Rytinki M, Palvimo JJ (2014) Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol 28(10):1719–1728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Kim JH, Lee JM, Nam HJ, Choi HJ, Yang JW, Lee JS, Kim MH, Kim SI, Chung CH, Kim KI, Baek SH (2007) SUMOylation of pontin chromatin-remodeling complex reveals a signal integration code in prostate cancer cells. Proc Natl Acad Sci USA 104(52):20793–20798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kotaja N, Karvonen U, Jänne OA, Palvimo JJ (2002) The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J Biol Chem 277(33):30283–30288

    Article  CAS  PubMed  Google Scholar 

  218. Yang Y, Tse AK, Li P, Ma Q, Xiang S, Nicosia SV, Seto E, Zhang X, Bai W (2011) Inhibition of androgen receptor activity by histone deacetylase 4 through receptor SUMOylation. Oncogene 30(19):2207–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Jang D, Kwon H, Choi M, Lee J, Pak Y (2019) Sumoylation of Flotillin-1 promotes EMT in metastatic prostate cancer by suppressing Snail degradation. Oncogene 38(17):3248–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Burdelski C, Menan D, Tsourlakis MC, Kluth M, Hube-Magg C, Melling N, Minner S, Koop C, Graefen M, Heinzer H, Wittmer C, Sauter G, Simon R, Schlomm T, Steurer S, Krech T (2015) The prognostic value of SUMO1/Sentrin specific peptidase 1 (SENP1) in prostate cancer is limited to ERG-fusion positive tumors lacking PTEN deletion. BMC Cancer 15:538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Wang Q, Xia N, Li T, Xu Y, Zou Y, Zuo Y, Fan Q, Bawa-Khalfe T, Yeh ET, Cheng J (2013) SUMO-specific protease 1 promotes prostate cancer progression and metastasis. Oncogene 32(19):2493–2498

    Article  CAS  PubMed  Google Scholar 

  222. Kaikkonen S, Jääskeläinen T, Karvonen U, Rytinki MM, Makkonen H, Gioeli D, Paschal BM, Palvimo JJ (2009) SUMO-specific protease 1 (SENP1) reverses the hormone-augmented SUMOylation of androgen receptor and modulates gene responses in prostate cancer cells. Mol Endocrinol 23(3):292–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Cheng J, Bawa T, Lee P, Gong L, Yeh ET (2006) Role of desumoylation in the development of prostate cancer. Neoplasia 8(8):667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Bawa-Khalfe T, Cheng J, Wang Z, Yeh ET (2007) Induction of the SUMO-specific protease 1 transcription by the androgen receptor in prostate cancer cells. J Biol Chem 282(52):37341–37349

    Article  CAS  PubMed  Google Scholar 

  225. Cheng J, Wang D, Wang Z, Yeh ET (2004) SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol Cell Biol 24(13):6021–6028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Bawa-Khalfe T, Yeh ET (2010) SUMO losing balance: SUMO proteases disrupt SUMO homeostasis to facilitate cancer development and progression. Genes Cancer 1(7):748–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zhang X, Wang H, Wang H, Xiao F, Seth P, Xu W, Jia Q, Wu C, Yang Y, Wang L (2017) SUMO-specific cysteine protease 1 promotes epithelial mesenchymal transition of prostate cancer cells via regulating SMAD4 deSUMOylation. Int J Mol Sci 18(4):E808

    Article  PubMed  CAS  Google Scholar 

  228. Kiessling A, Hogrefe C, Erb S, Bobach C, Fuessel S, Wessjohann L, Seliger B (2009) Expression, regulation and function of the ISGylation system in prostate cancer. Oncogene 28(28):2606–2620

    Article  CAS  PubMed  Google Scholar 

  229. Satake H, Tamura K, Furihata M, Anchi T, Sakoda H, Kawada C, Iiyama T, Ashida S, Shuin T (2010) The ubiquitin-like molecule interferon-stimulated gene 15 is overexpressed in human prostate cancer. Oncol Rep 23(1):11–16

    CAS  PubMed  Google Scholar 

  230. Wang X, Zhang W, Yan Z, Liang Y, Li L, Yu X, Feng Y, Fu S, Zhang Y, Zhao H, Yu J, Jeong LS, Guo X, Jia L (2016) Radiosensitization by the investigational NEDD8-activating enzyme inhibitor MLN4924 (pevonedistat) in hormone-resistant prostate cancer cells. Oncotarget 7(25):38380–38391

    PubMed  PubMed Central  Google Scholar 

  231. Park SY, Park JW, Lee GW, Li L, Chun YS (2018) Inhibition of neddylation facilitates cell migration through enhanced phosphorylation of caveolin-1 in PC3 and U373MG cells. BMC Cancer 18(1):30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15(17):5308–5316

    Article  PubMed  PubMed Central  Google Scholar 

  233. Lozy F, Karantza V (2012) Autophagy and cancer cell metabolism. Semin Cell Dev Biol 23(4):395–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Naponelli V, Modernelli A, Bettuzzi S, Rizzi F (2015) Roles of autophagy induced by natural compounds in prostate cancer. Biomed Res Int 2015:121826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Maycotte P, Thorburn A (2011) Autophagy and cancer therapy. Cancer Biol Ther 11(2):127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, Kalachikov S, Gilliam TC, Levine B (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59(1):59–65

    Article  CAS  PubMed  Google Scholar 

  237. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Liu C, Xu P, Chen D, Fan X, Xu Y, Li M, Yang X, Wang C (2013) Roles of autophagy-related genes Beclin-1 and LC3 in the development and progression of prostate cancer and benign prostatic hyperplasia. Biomed Rep 1(6):855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Giatromanolaki A, Sivridis E, Mendrinos S, Koutsopoulos AV, Koukourakis MI (2014) Autophagy proteins in prostate cancer: relation with anaerobic metabolism and Gleason score. Urol Oncol 32(1):39.e11–39.e18

    Article  CAS  Google Scholar 

  240. Santanam U, Banach-Petrosky W, Abate-Shen C, Shen MM, White E, DiPaola RS (2016) Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev 30(4):399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20(1):21–30

    Article  CAS  PubMed  Google Scholar 

  242. Burdelski C, Reiswich V, Hube-Magg C, Kluth M, Minner S, Koop C, Graefen M, Heinzer H, Tsourlakis MC, Wittmer C, Huland H, Simon R, Schlomm T, Sauter G, Steurer S (2015) Cytoplasmic accumulation of sequestosome 1 (p62) is a predictor of biochemical recurrence, rapid tumor cell proliferation, and genomic instability in prostate cancer. Clin Cancer Res 21(15):3471–3479

    Article  CAS  PubMed  Google Scholar 

  243. Howard N, Clementino M, Kim D, Wang L, Verma A, Shi X, Zhang Z, DiPaola RS (2019) New developments in mechanisms of prostate cancer progression. Semin Cancer Biol 57:111–116. (18)30079-8

    Article  CAS  PubMed  Google Scholar 

  244. Mitani T, Minami M, Harada N, Ashida H, Yamaji R (2015) Autophagic degradation of the androgen receptor mediated by increased phosphorylation of p62 suppresses apoptosis in hypoxia. Cell Signal 27(10):1994–2001

    Article  CAS  PubMed  Google Scholar 

  245. Jiang X, Huang Y, Liang X, Jiang F, He Y, Li T, Xu G, Zhao H, Yang W, Jiang G, Su Z, Jiang L, Liu L (2018) Metastatic prostate cancer-associated P62 inhibits autophagy flux and promotes epithelial to mesenchymal transition by sustaining the level of HDAC6. Prostate 78(6):426–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Ye R, Pi M, Nooh MM, Bahout SW, Quarles LD (2019) Human GPRC6A mediates testosterone-induced mitogen-activated protein kinases and mTORC1 signaling in prostate cancer cells. Mol Pharmacol 95(5):563–572

    Article  PubMed  PubMed Central  Google Scholar 

  247. Blessing AM, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Cortes CJ, Cheung E, La Spada AR, Bast RC Jr, Merchant FA, Coarfa C, Frigo DE (2017) Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy 13(3):506–521

    Article  CAS  PubMed  Google Scholar 

  248. Wen S, Niu Y, Lee SO, Chang C (2014) Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat Rev 40(1):31–40

    Article  PubMed  CAS  Google Scholar 

  249. Ziparo E, Petrungaro S, Marini ES, Starace D, Conti S, Facchiano A, Filippini A, Giampietri C (2013) Autophagy in prostate cancer and androgen suppression therapy. Int J Mol Sci 14(6):12090–12106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Huang Y, Jiang X, Liang X, Jiang G (2018) Molecular and cellular mechanisms of castration resistant prostate cancer. Oncol Lett 15(5):6063–6076

    PubMed  PubMed Central  Google Scholar 

  251. Xie CW, Zhou Y, Liu SL, Fang ZY, Su B, Zhang W (2015) Gabarapl1 mediates androgen-regulated autophagy in prostate cancer. Tumour Biol 36(11):8727–8733

    Article  CAS  PubMed  Google Scholar 

  252. Deshaies RJ (2014) Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol 12:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Tsai YC, Weissman AM (2010) The unfolded protein response, degradation from endoplasmic reticulum and cancer. Genes Cancer 1(7):764–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Croft A, Tay KH, Boyd SC, Guo ST, Jiang CC, Lai F, Tseng HY, Jin L, Rizos H, Hersey P, Zhang XD (2014) Oncogenic activation of MEK/ERK primes melanoma cells for adaptation to endoplasmic reticulum stress. J Invest Dermatol 134(2):488–497

    Article  CAS  PubMed  Google Scholar 

  255. Storm M, Sheng X, Arnoldussen YJ, Saatcioglu F (2016) Prostate cancer and the unfolded protein response. Oncotarget 7(33):54051–54066

    Article  PubMed  PubMed Central  Google Scholar 

  256. So AY, de la Fuente E, Walter P, Shuman M, Bernales S (2009) The unfolded protein response during prostate cancer development. Cancer Metastasis Rev 28(1-2):219–223

    Article  CAS  PubMed  Google Scholar 

  257. Sheng X, Arnoldussen YJ, Storm M, Tesikova M, Nenseth HZ, Zhao S, Fazli L, Rennie P, Risberg B, Wæhre H, Danielsen H, Mills IG, Jin Y, Hotamisligil G, Saatcioglu F (2015) Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med 7(6):788–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Sheng X, Nenseth HZ, Qu S, Kuzu OF, Frahnow T, Simon L, Greene S, Zeng Q, Fazli L, Rennie PS, Mills IG, Danielsen H, Theis F, Patterson JB, Jin Y, Saatcioglu F (2019) IRE1alpha-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat Commun 10(1):323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Overcash RF, Chappell VA, Green T, Geyer CB, Asch AS, Ruiz-EchevarrĂ­a MJ (2013) Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the alpha subunit of the translation initiation factor 2. PLoS One 8(2):e55257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Azad AA, Zoubeidi A, Gleave ME, Chi KN (2015) Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol 12(1):26–36

    Article  CAS  PubMed  Google Scholar 

  261. Pootrakul L, Datar RH, Shi SR, Cai J, Hawes D, Groshen SG, Lee AS, Cote RJ (2006) Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin Cancer Res 12(20 Pt 1):5987–5993

    Article  CAS  PubMed  Google Scholar 

  262. Burikhanov R, Zhao Y, Goswami A, Qiu S, Schwarze SR, Rangnekar VM (2009) The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138(2):377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Rah B, ur Rasool R, Nayak D, Yousuf SK, Mukherjee D, Kumar LD, Goswami A (2015) PAWR-mediated suppression of BCL2 promotes switching of 3-azido withaferin A (3-AWA)-induced autophagy to apoptosis in prostate cancer cells. Autophagy 11(2):314–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Albany C, Hahn NM (2014) Heat shock and other apoptosis-related proteins as therapeutic targets in prostate cancer. Asian J Androl 16(3):359–363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Voll EA, Ogden IM, Pavese JM, Huang X, Xu L, Jovanovic BD, Bergan RC (2014) Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression. Oncotarget 5(9):2648–2663

    Article  PubMed  PubMed Central  Google Scholar 

  266. Gibbons NB, Watson RW, Coffey RN, Brady HP (2000) Fitzpatrick JM (2000) Heat-shock proteins inhibit induction of prostate cancer cell apoptosis. Prostate 45(1):58–65

    Article  CAS  PubMed  Google Scholar 

  267. Roigas J, Wallen ES, Loening SA, Moseley PL (1998) Effects of combined treatment of chemotherapeutics and hyperthermia on survival and the regulation of heat shock proteins in Dunning R3327 prostate carcinoma cells. Prostate 34(3):195–202

    Article  CAS  PubMed  Google Scholar 

  268. Kita K, Shiota M, Tanaka M, Otsuka A, Matsumoto M, Kato M, Tamada S, Iwao H, Miura K, Nakatani T, Tomita S (2017) Heat shock protein 70 inhibitors suppress androgen receptor expression in LNCaP95 prostate cancer cells. Cancer Sci 108(9):1820–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Christianson JC, Ye Y (2014) Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 21(4):325–335

    Article  CAS  PubMed  Google Scholar 

  270. Romanuik TL, Wang G, Holt RA, Jones SJ, Marra MA, Sadar MD (2009) Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. BMC Genomics 10:476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Shang Y, Zhu Z (2013) gp78 is specifically expressed in human prostate cancer rather than normal prostate tissue. J Mol Histol 44(6):653–659

    Article  CAS  PubMed  Google Scholar 

  272. Tsujimoto Y, Tomita Y, Hoshida Y, Kono T, Oka T, Yamamoto S, Nonomura N, Okuyama A, Aozasa K (2004) Elevated expression of valosin-containing protein (p97) is associated with poor prognosis of prostate cancer. Clin Cancer Res 10(9):3007–3012

    Article  CAS  PubMed  Google Scholar 

  273. Duscharla D, Reddy Kami Reddy K, Dasari C, Bhukya S, Ummanni R (2018) Interleukin-6 induced overexpression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol 233(10):7148–7164

    Article  CAS  PubMed  Google Scholar 

  274. Erzurumlu Y, Ballar P (2017) Androgen mediated regulation of endoplasmic reticulum-associated degradation and its effects on prostate cancer. Sci Rep 7:40719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work by PBK is supported by the Scientific and Technological Research Council of Turkey (TUBITAK, SBAG-108S056/114S062), Ege University internal funds, BAGEP Award of the Science Academy with funding supplied by Pfizer-Turkey, COST Action (PROTEOSTASIS BM1307), and by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ballar Kirmizibayrak, P., Erbaykent-Tepedelen, B., Gozen, O., Erzurumlu, Y. (2020). Divergent Modulation of Proteostasis in Prostate Cancer. In: Barrio, R., Sutherland, J., Rodriguez, M. (eds) Proteostasis and Disease . Advances in Experimental Medicine and Biology, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-38266-7_5

Download citation

Publish with us

Policies and ethics