Skip to main content

The Proteasome System in Health and Disease

  • Chapter
  • First Online:
Proteostasis and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1233))

Abstract

The proteasome is involved in the regulation of all cellular pathways and consequently plays a central role in the control of cellular homeostasis. Together with its regulators, it is at the frontline, both as an actor and as a target, in human health and when homeostasis is disturbed in disease. In this review, we aim to provide an overview of the many levels at which the functions of the proteasome and its regulators can be regulated to cope with cellular needs or are altered in pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navon A, Ciechanover A (2009) The 26 S proteasome: from basic mechanisms to drug targeting. J Biol Chem 284:33713–33718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meiners S, Keller IE, Semren N, Caniard A (2014) Regulation of the proteasome: evaluating the lung proteasome as a new therapeutic target. Antioxid Redox Signal 21:2364–2382

    Article  CAS  PubMed  Google Scholar 

  3. Deshaies RJ (2014) Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol 12:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Manasanch EE, Orlowski RZ (2017) Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 14:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Njomen E, Tepe JJ (2019) Proteasome activation as a new therapeutic approach to target proteotoxic disorders. J Med Chem 62:6469–6481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang X, Dixit VM (2016) Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26:484–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lai AC, Crews CM (2017) Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov 16:101–114

    Article  CAS  PubMed  Google Scholar 

  8. Dantuma NP, Lindsten K, Glas R, Jellne M, Masucci MG (2000) Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol 18:538–543

    Article  CAS  PubMed  Google Scholar 

  9. Fuchs ACD, Hartmann MD (2019) On the origins of symmetry and modularity in the proteasome family: symmetry transitions are pivotal in the evolution and functional diversification of self-compartmentalizing proteases. BioEssays 41:e1800237

    Article  PubMed  Google Scholar 

  10. Coux O, Nothwang HG, Silva Pereira I, Recillas Targa F, Bey F, Scherrer K (1994) Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. Mol Gen Genet MGG 245:769–780

    Article  CAS  PubMed  Google Scholar 

  11. Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471

    Article  CAS  PubMed  Google Scholar 

  12. Silva Pereira I, Bey F, Coux O, Scherrer K (1992) Two mRNAs exist for the Hs PROS-30 gene encoding a component of human prosomes. Gene 120:235–242

    Article  CAS  PubMed  Google Scholar 

  13. Yang Y, Waters JB, Früh K, Peterson PA (1992) Proteasomes are regulated by interferon gamma: implications for antigen processing. Proc Natl Acad Sci USA 89:4928–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sijts EJAM, Kloetzel PM (2011) The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci 68:1491–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guillaume B, Chapiro J, Stroobant V, Colau D, Van Holle B et al (2010) Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proc Natl Acad Sci USA 107:18599–18604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fabre B, Lambour T, Garrigues L, Ducoux-Petit M, Amalric F et al (2014) Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines. J Proteome Res 13:3027–3037

    Article  CAS  PubMed  Google Scholar 

  17. Murata S, Sasaki K, Kishimoto T, Niwa SISI, Hayashi H, Takahama Y, Tanaka K (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316:1349–1353

    Article  CAS  PubMed  Google Scholar 

  18. Murata S, Takahama Y, Kasahara M, Tanaka K (2018) The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol 19:923–931

    Article  CAS  PubMed  Google Scholar 

  19. Qian MX, Pang Y, Liu CH, Haratake K, Du BY et al (2013) Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153:1012–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Padmanabhan A, Vuong SAT, Hochstrasser M (2016) Assembly of an evolutionarily conserved alternative proteasome isoform in human cells. Cell Rep 14:2962–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hammack LJ, Kusmierczyk AR (2016) Assembly of proteasome subunits into non-canonical complexes in vivo. Biochem Biophys Res Commun 482:6–11

    Google Scholar 

  22. Fabre B, Lambour T, Garrigues L, Amalric F, Vigneron N et al (2015) Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Mol Syst Biol 11:1–16

    Article  CAS  Google Scholar 

  23. Wójcik C, DeMartino GN (2002) Analysis of Drosophila 26 S proteasome using RNA interference. J Biol Chem 277:6188–6197

    Article  PubMed  CAS  Google Scholar 

  24. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99:14374–14379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meiners S, Heyken D, Weller A, Ludwig A, Stangl K et al (2003) Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J Biol Chem 278:21517–21525

    Article  CAS  PubMed  Google Scholar 

  26. Koizumi S, Hamazaki J, Murata S (2018) Transcriptional regulation of the 26S proteasome by Nrf1. Proc Jpn Acad Ser B Phys Biol Sci 94:325–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ (2010) Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell 38:17–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steffen J, Seeger M, Koch A, Krüger E, Kruger E (2010) Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell 40:147–158

    Article  CAS  PubMed  Google Scholar 

  29. Dikic I (2017) Proteasomal and autophagy degradation systems. Annu Rev Biochem 86:193–224

    Article  CAS  PubMed  Google Scholar 

  30. Gaczynska M, Goldberg AL, Tanaka K, Hendil KB, Rock KL (1996) Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferon-gamma-induced subunits LMP2 and LMP7. J Biol Chem 271:17275–17280

    Article  CAS  PubMed  Google Scholar 

  31. Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, Gonos ES (2005) Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem 280:11840–11850

    Article  CAS  PubMed  Google Scholar 

  32. Li D, Dong Q, Tao Q, Gu J, Cui Y et al (2015) c-Abl regulates proteasome abundance by controlling the ubiquitin-proteasomal degradation of PSMA7 subunit. Cell Rep 10:484–497

    Article  CAS  PubMed  Google Scholar 

  33. Hu XT, Chen W, Wang D, Shi QL, Zhang FB et al (2008) The proteasome subunit PSMA7 located on the 20q13 amplicon is overexpressed and associated with liver metastasis in colorectal cancer. Oncol Rep 19:441–446

    CAS  PubMed  Google Scholar 

  34. Sahara K, Kogleck L, Yashiroda H, Murata S (2014) The mechanism for molecular assembly of the proteasome. Adv Biol Regul 54:51–58

    Article  CAS  PubMed  Google Scholar 

  35. Chondrogianni N, Gonos ES (2007) Overexpression of hUMP1/POMP proteasome accessory protein enhances proteasome-mediated antioxidant defence. Exp Gerontol 42:899–903

    Article  CAS  PubMed  Google Scholar 

  36. Shin SW, Shimizu N, Tokoro M, Nishikawa S, Hatanaka Y et al (2013) Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition. Biol Open 2:170–182

    Article  CAS  PubMed  Google Scholar 

  37. Bai M, Zhao X, Sahara K, Ohte Y, Hirano Y et al (2014) Assembly mechanisms of specialized core particles of the proteasome. Biomolecules 4:662–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Le Tallec B, Barrault MB, Courbeyrette R, Guérois R, Marsolier-Kergoat MC, Peyroche A (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27:660–674

    Article  PubMed  CAS  Google Scholar 

  39. Fricke B, Heink S, Steffen J, Kloetzel PM, Krüger E (2007) The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep 8:1170–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hegde RS, Keenan RJ (2011) Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol 12:787–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Akahane T, Sahara K, Yashiroda H, Tanaka K, Murata S (2013) Involvement of Bag6 and the TRC pathway in proteasome assembly. Nat Commun 4:2234

    Article  PubMed  CAS  Google Scholar 

  42. Hendil KB (1988) The 19 S multicatalytic ‘prosome’ proteinase is a constitutive enzyme in HeLa cells. Biochem Int 17:471–477

    CAS  PubMed  Google Scholar 

  43. Cuervo AM, Palmer A, Rivett AJ, Knecht E (1995) Degradation of proteasomes by lysosomes in rat liver. Eur J Biochem 227:792–800

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka K, Ichihara A (1989) Half-life of proteasomes (multiprotease complexes) in rat liver. Biochem Biophys Res Commun 159:1309–1315

    Article  CAS  PubMed  Google Scholar 

  45. Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD (2015) Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell 58:1053–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Waite KA, De-La Mota-Peynado A, Vontz G, Roelofs J (2016) Starvation induces proteasome autophagy with different pathways for core and regulatory particles. J Biol Chem 291:3239–3253

    Article  CAS  PubMed  Google Scholar 

  47. Cohen-Kaplan V, Livneh I, Avni N, Fabre B, Ziv T, Kwon YT, Ciechanover A (2016) p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc Natl Acad Sci U S A 113:E7490–E7499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marshall RS, Vierstra RD (2018) Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation. eLife 7:e34532

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, Tanaka K (2000) Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem 275:14336–14345

    Article  CAS  PubMed  Google Scholar 

  50. Wang X, Yen J, Kaiser P, Huang L (2010) Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 3:ra88

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Grune T, Catalgol B, Licht A, Ermak G, Pickering AM, Ngo JK, Davies KJA (2011) HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med 51:1355–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jung T, Höhn A, Grune T (2014) The proteasome and the degradation of oxidized proteins: Part III. Redox regulation of the proteasomal system. Redox Biol 2:388–394

    Article  CAS  Google Scholar 

  53. Livnat-Levanon N, Kevei E, Kleifeld O, Krutauz D, Segref A et al (2014) Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep 7:1371–1380

    Article  CAS  PubMed  Google Scholar 

  54. Wang X, Chemmama IEE, Yu C, Huszagh A, Xu Y et al (2017) The proteasome-interacting Ecm29 protein disassembles the 26S proteasome in response to oxidative stress. J Biol Chem 292:16310–16320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pickering AM, Davies KJA (2012) Differential roles of proteasome and immunoproteasome regulators Pa28αβ, Pa28γ and Pa200 in the degradation of oxidized proteins. Arch Biochem Biophys 523:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Raynes R, Pomatto LCD, Davies KJA (2016) Degradation of oxidized proteins by the proteasome: distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol Asp Med 50:41–55

    Article  CAS  Google Scholar 

  57. Shibatani T, Carlson EJ, Larabee F, McCormack AL, Früh K, Skach WR (2006) Global organization and function of mammalian cytosolic proteasome pools: implications for PA28 and 19S regulatory complexes. Mol Biol Cell 17:4962–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Welk V, Coux O, Kleene V, Abeza C, Trümbach D, Eickelberg O, Meiners S (2016) Inhibition of proteasome activity induces formation of alternative proteasome complexes. J Biol Chem 291:13147–13159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Groll M, Bajorek M, Köhler A, Moroder L, Rubin DM et al (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7:1062–1067

    Article  CAS  PubMed  Google Scholar 

  60. Savulescu AF, Glickman MH (2011) Proteasome activator 200: the heat is on… . Mol Cell Proteomics 10:R110.006890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Li X, Thompson D, Kumar B, Demartino GN (2014) Molecular and cellular roles of PI31 (PSMF1) in regulation of proteasome function. J Biol Chem 289:17392–17405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell 27:731–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN (2008) Differential roles of the C-termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26s proteasome. J Biol Chem 283:31813–31822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115–120

    Article  CAS  PubMed  Google Scholar 

  65. Förster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005) The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18:589–599

    Article  PubMed  CAS  Google Scholar 

  66. Stadtmueller BM, Hill CP (2011) Proteasome activators. Mol Cell 41:8–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kish-Trier E, Hill CP (2013) Structural biology of the proteasome. Annu Rev Biophys 42:29–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dange T, Smith D, Noy T, Rommel PC, Jurzitza L et al (2011) Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem 286:42830–42839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Toste Rêgo A, da Fonseca PCA (2019) Characterization of fully recombinant human 20S and 20S-PA200 proteasome complexes. Mol Cell. https://doi.org/10.1016/j.molcel.2019.07.014

  70. Opoku-Nsiah KA, Gestwicki JE (2018) Aim for the core: suitability of the ubiquitin-independent 20S proteasome as a drug target in neurodegeneration. Transl Res 198:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kisselev AF, Kaganovich D, Goldberg AL (2002) Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings. J Biol Chem 277:22260–22270

    Article  CAS  PubMed  Google Scholar 

  72. Tanaka K, Yoshimura T, Kumatori A, Ichihara A, Ikai A et al (1988) Proteasomes (multi-protease complexes) as 20 S ring-shaped particles in a variety of eukaryotic cells. J Biol Chem 263:16209–16217

    CAS  PubMed  Google Scholar 

  73. Orlowski M (2001) Selective activation of the 20 S proteasome (multicatalytic proteinase complex) by histone h3. Biochemistry 40:15318–15326

    Article  CAS  PubMed  Google Scholar 

  74. Mayer-Kuckuk P, Ullrich O, Ziegler M, Grune T, Schweiger M (1999) Functional interaction of poly(ADP-ribose) with the 20S proteasome in vitro. Biochem Biophys Res Commun 259:576–581

    Article  CAS  PubMed  Google Scholar 

  75. Tanaka K, Yoshimura T, Ichihara A (1989) Role of substrate in reversible activation of proteasomes (multi-protease complexes) by sodium dodecyl sulfate. J Biochem (Tokyo) 106:495–500

    Article  CAS  Google Scholar 

  76. Hirano H, Kimura Y, Kimura A (2016) Biological significance of co- and post-translational modifications of the yeast 26S proteasome. J Proteome 134:37–46

    Article  CAS  Google Scholar 

  77. Scruggs SB, Zong NC, Wang D, Stefani E Ping P (2012) Post-translational modification of cardiac proteasomes: functional delineation enabled by proteomics. Am J Physiol Heart Circ Physiol 303:H9–H18.

    Google Scholar 

  78. Tanaka K, Yoshimura T, Tamura T, Fujiwara T, Kumatori A, Ichihara A (1990) Possible mechanism of nuclear translocation of proteasomes. FEBS Lett 271:41–46

    Article  CAS  PubMed  Google Scholar 

  79. Rivett AJ (1998) Intracellular distribution of proteasomes. Curr Opin Immunol 10:110–114

    Article  CAS  PubMed  Google Scholar 

  80. Rivett AJ, Bose S, Brooks P, Broadfoot KI (2001) Regulation of proteasome complexes by gamma-interferon and phosphorylation. Biochimie 83:363–366

    Article  CAS  PubMed  Google Scholar 

  81. VerPlank JJS, Goldberg AL (2017) Regulating protein breakdown through proteasome phosphorylation. Biochem J 474:3355–3371

    Article  CAS  PubMed  Google Scholar 

  82. Guo X, Huang X, Chen MJ (2017) Reversible phosphorylation of the 26S proteasome. Protein Cell 8:255–272

    Article  PubMed  PubMed Central  Google Scholar 

  83. Baraibar MA, Friguet B (2012) Changes of the proteasomal system during the aging process. Prog Mol Biol Transl Sci 109:249–275

    Article  CAS  PubMed  Google Scholar 

  84. Ventadour S, Jarzaguet M, Wing SS, Chambon C, Combaret L et al (2007) A new method of purification of proteasome substrates reveals polyubiquitination of 20 S proteasome subunits. J Biol Chem 282:5302–5309

    Article  CAS  PubMed  Google Scholar 

  85. Fabre B, Lambour T, Delobel J, Amalric F, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP (2013) Subcellular distribution and dynamics of active proteasome complexes unraveled by a workflow combining in vivo complex cross-linking and quantitative proteomics. Mol Cell Proteomics 12:687–699

    Article  CAS  PubMed  Google Scholar 

  86. Pal JK, Gounon P, Grossi de Sa MF, Scherrer K (1988) Presence and distribution of specific prosome antigens change as a function of embryonic development and tissue-type differentiation in Pleurodeles waltl. J Cell Sci 90:555–567

    PubMed  Google Scholar 

  87. Amsterdam A, Pitzer F, Baumeister W (1993) Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis associated with a role in cell cycle control. Proc Natl Acad Sci USA 90:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Palmer A, Mason GG, Paramio JM, Knecht E, Rivett AJ (1994) Changes in proteasome localization during the cell cycle. Eur J Cell Biol 64:163–175

    CAS  PubMed  Google Scholar 

  89. Nakamura A, Kitami T, Mori H, Mizuno Y, Hattori N (2006) Nuclear localization of the 20S proteasome subunit in Parkinson’s disease. Neurosci Lett 406:43–48

    Article  CAS  PubMed  Google Scholar 

  90. Reits EA, Benham AM, Plougastel B, Neefjes J, Trowsdale J (1997) Dynamics of proteasome distribution in living cells. EMBO J 16:6087–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Laporte D, Salin B, Daignan-Fornier B, Sagot I (2008) Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol 181:737–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rivett AJ, Palmer A, Knecht E (1992) Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells. J Histochem Cytochem 40:1165–1172

    Article  CAS  PubMed  Google Scholar 

  93. Sikder D, Johnston SA, Kodadek T (2006) Widespread, but non-identical, association of proteasomal 19 and 20 S proteins with yeast chromatin. J Biol Chem 281:27346–27355

    Article  CAS  PubMed  Google Scholar 

  94. Grossi de Sa MF, Martins de Sa C, Harper F, Olink-Coux M, Huesca M, Scherrer K (1988) The association of prosomes with some of the intermediate filament networks of the animal cell. J Cell Biol 107:1517–1530

    Article  CAS  PubMed  Google Scholar 

  95. Olink-Coux M, Arcangeletti C, Pinardi F, Minisini R, Huesca M, Chezzi C, Scherrer K (1994) Cytolocation of prosome antigens on intermediate filament subnetworks of cytokeratin, vimentin and desmin type. J Cell Sci 107:353–366

    CAS  PubMed  Google Scholar 

  96. Hsu MT, Guo CL, Liou AY, Chang TY, Ng MC et al (2015) Stage-dependent axon transport of proteasomes contributes to axon development. Dev Cell 35:418–431

    Article  CAS  PubMed  Google Scholar 

  97. Liu K, Jones S, Minis A, Rodriguez J, Molina H, Steller H (2019) PI31 is an adaptor protein for proteasome transport in axons and required for synaptic development. Dev Cell 50:509–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wójcik C, DeMartino GN (2003) Intracellular localization of proteasomes. Int J Biochem Cell Biol 35:579–589

    Article  PubMed  CAS  Google Scholar 

  99. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  CAS  PubMed  Google Scholar 

  100. Ramachandran KV, Margolis SS (2017) A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function. Nat Struct Mol Biol 24:419–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bochmann I, Ebstein F, Lehmann A, Wohlschlaeger J, Sixt SU, Kloetzel PM, Dahlmann B (2014) T lymphocytes export proteasomes by way of microparticles: a possible mechanism for generation of extracellular proteasomes. J Cell Mol Med 18:59–68

    Article  CAS  PubMed  Google Scholar 

  102. Bec N, Bonhoure A, Henry L, Berry L, Larroque C et al (2019) Proteasome 19S RP and translation preinitiation complexes are secreted within exosomes upon serum starvation. Traffic 20:516–536

    Article  CAS  PubMed  Google Scholar 

  103. Henry L, Fabre C, Guiraud I, Bastide S, Fabbro-Peray P et al (2013) Clinical use of p-proteasome in discriminating metastatic melanoma patients: comparative study with LDH, MIA and S100B protein. Int J Cancer 133:142–148

    Article  CAS  PubMed  Google Scholar 

  104. Jiang TX, Zhao M, Qiu XB (2018) Substrate receptors of proteasomes. Biol Rev 93:1765–1777

    Article  PubMed  Google Scholar 

  105. Fort P, Kajava AV, Delsuc FF, Coux O (2015) Evolution of proteasome regulators in eukaryotes. Genome Biol Evol 7:1363–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    Article  CAS  PubMed  Google Scholar 

  107. Rousseau A, Bertolotti A (2018) Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol 19:697–712

    Article  CAS  PubMed  Google Scholar 

  108. Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169:792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13:355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Emmott E, Jovanovic M, Slavov N (2019) Ribosome stoichiometry: from form to function. Trends Biochem Sci 44:95–109

    Article  CAS  PubMed  Google Scholar 

  111. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A (2018) Structure and function of the 26S proteasome. Annu Rev Biochem 87:697–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Eisele MR, Reed RG, Rudack T, Schweitzer A, Beck F et al (2018) Expanded coverage of the 26S proteasome conformational landscape reveals mechanisms of peptidase gating. Cell Rep 24:1301–1315.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Matyskiela ME, Lander GC, Martin A (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Finley D, Chen X, Walters KJ (2015) Gates, channels, and switches: elements of the proteasome machine. Trends Biochem Sci 41:1–17

    Google Scholar 

  115. Navon A, Goldberg AL (2001) Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol Cell 8:1339–1349

    Article  CAS  PubMed  Google Scholar 

  116. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Asano S, Fukuda Y, Beck F, Aufderheide A, Förster F, Danev R, Baumeister W (2015) A molecular census of 26. Science 347:439–443

    Article  CAS  PubMed  Google Scholar 

  118. Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC (2016) Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5:1–17

    Article  Google Scholar 

  119. de la Peña AH, Goodall EA, Gates SN, Lander GC, Martin A (2018) Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation. Science 362:eaav0725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, Avni N, Ciechanover A (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 26:869–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Princiotta MF, Finzi D, Qian SB, Gibbs J, Schuchmann S et al (2003) Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18:343–354

    Article  CAS  PubMed  Google Scholar 

  122. Brooks P, Fuertes G, Murray RZ, Bose S, Knecht E et al (2000) Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J 346:155–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gerhardt C, Leu T, Lier JM, Rüther U (2016) The cilia-regulated proteasome and its role in the development of ciliopathies and cancer. Cilia 5:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Gerhardt C, Lier JM, Burmühl S, Struchtrup A, Deutschmann K et al (2015) The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium. J Cell Biol 210:115–133

    Article  CAS  PubMed  Google Scholar 

  125. Liu YP, Tsai IC, Morleo M, Oh EC, Leitch CC et al (2014) Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators. J Clin Invest 124:2059–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bingol B, Schuman EM (2006) Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441:1144–1148

    Article  CAS  PubMed  Google Scholar 

  127. Enenkel C (2018) The paradox of proteasome granules. Curr Genet 64:137–140

    Article  CAS  PubMed  Google Scholar 

  128. Albert S, Schaffer M, Beck F, Mosalaganti S, Asano S et al (2017) Proteasomes tether to two distinct sites at the nuclear pore complex. Proc Natl Acad Sci USA 114:13726–13731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Protter DSW, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26:668–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Turakhiya A, Meyer SR, Marincola G, Böhm S, Vanselow JT et al (2018) ZFAND1 recruits p97 and the 26S proteasome to promote the clearance of arsenite-induced stress granules. Mol Cell 70:906–919

    Article  CAS  PubMed  Google Scholar 

  131. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Guo Q, Lehmer C, Martínez-Sánchez A, Rudack T, Beck F et al (2018) In situ structure of neuronal C9orf72 Poly-GA aggregates reveals proteasome recruitment. Cell 172:696–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang Y, Nicholatos J, Dreier JR, Ricoult SJH, Widenmaier SB et al (2014) Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513:440–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu G, Rogers J, Murphy CT, Rongo C (2011) EGF signalling activates the ubiquitin proteasome system to modulate C. elegans lifespan. EMBO J 30:2990–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K et al (2017) Social network architecture of human immune cells unveiled by quantitative proteomics. Nat Immunol 18:583–593

    Article  CAS  PubMed  Google Scholar 

  136. Tsvetkov P, Mendillo ML, Zhao J, Carette JE, Merrill PH et al (2015) Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. eLife 4:e08467

    Article  PubMed Central  Google Scholar 

  137. Acosta-Alvear D, Cho MY, Wild T, Buchholz TJ, Lerner AG et al (2015) Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits. eLife 4:e08153

    Article  PubMed  PubMed Central  Google Scholar 

  138. Tsvetkov P, Sokol E, Jin D, Brune Z, Thiru P et al (2016) Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers. Proc Natl Acad Sci USA 114:382–387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  139. Cohen-Kaplan V, Ciechanover A, Livneh I (2017) Stress-induced polyubiquitination of proteasomal ubiquitin receptors targets the proteolytic complex for autophagic degradation. Autophagy 13:759–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Budenholzer L, Cheng CL, Li Y, Hochstrasser M (2017) Proteasome structure and assembly. J Mol Biol 429:3500–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rousseau A, Bertolotti A (2016) An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536:184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang X, Jiang B, Zhang Y (2016) Gankyrin regulates cell signaling network. Tumour Biol 37:5675–5682

    Article  CAS  PubMed  Google Scholar 

  143. Pathare GR, Nagy I, Bohn S, Unverdorben P, Hubert A et al (2012) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA 109:149–154

    Article  CAS  PubMed  Google Scholar 

  144. Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C et al (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489:304–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Semren N, Welk V, Korfei M, Keller IE, Fernandez IE et al (2015) Regulation of 26S proteasome activity in pulmonary fibrosis. Am J Respir Crit Care Med 192:1089–1101

    Article  CAS  PubMed  Google Scholar 

  146. Segref A, Kevei É, Pokrzywa W, Schmeisser K, Mansfeld J et al (2014) Pathogenesis of human mitochondrial diseases is modulated by reduced activity of the ubiquitin/proteasome system. Cell Metab 19:642–652

    Article  CAS  PubMed  Google Scholar 

  147. Yu C, Wang X, Huszagh AS, Viner R, Novitsky EJ, Rychnovsky SD, Huang L (2019) Probing H2O2-mediated structural dynamics of the human 26S proteasome using quantitative cross-linking mass spectrometry (QXL-MS). Mol Cell Proteomics 18:954–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kammerl IE, Caniard A, Merl-Pham J, Ben-Nissan G, Mayr CH et al (2019) Dissecting the molecular effects of cigarette smoke on proteasome function. J Proteome 193:1–9

    Article  CAS  Google Scholar 

  149. Day SM, Divald A, Wang P, Davis F, Bartolone S, Jones R, Powell SR (2013) Impaired assembly and post-translational regulation of 26S proteasome in human end-stage heart failure. Circ Heart Fail 6:544–549

    Article  CAS  PubMed  Google Scholar 

  150. Barroso-Chinea P, Thiolat ML, Bido S, Martinez A, Doudnikoff E et al (2015) D1 dopamine receptor stimulation impairs striatal proteasome activity in Parkinsonism through 26S proteasome disassembly. Neurobiol Dis 78:77–87

    Article  CAS  PubMed  Google Scholar 

  151. Kammerl IE, Dann A, Mossina A, Brech D, Lukas C et al (2016) Impairment of immunoproteasome function by cigarette smoke and in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 193:1230–1241

    Article  CAS  PubMed  Google Scholar 

  152. Silva GM, Netto LES, Discola KF, Piassa-Filho GM, Pimenta DC, Bárcena JA, Demasi M (2008) Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome. FEBS J 275:2942–2955

    Article  CAS  PubMed  Google Scholar 

  153. Wang D, Fang C, Zong NC, Liem DA, Cadeiras M et al (2013) Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human. Mol Cell Proteomics 12:3793–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lokireddy S, Kukushkin NV, Goldberg AL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci USA 112:E7176–E7185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. VerPlank JJS, Lokireddy S, Zhao J, Goldberg AL (2019) 26S Proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation. Proc Natl Acad Sci USA 116:4228–4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, Dixon JE (2015) Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol 18:1–47

    CAS  Google Scholar 

  157. Xu J, Wang S, Zhang M, Wang Q, Asfa S, Zou MH (2012) Tyrosine nitration of PA700 links proteasome activation to endothelial dysfunction in mouse models with cardiovascular risk factors. PloS One 7:e29649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tsvetkov P, Myers N, Eliav R, Adamovich Y, Hagai T et al (2014) NADH binds and stabilizes the 26S proteasomes independent of ATP. J Biol Chem 289:11272–11281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE (2003) O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115:715–725

    Article  CAS  PubMed  Google Scholar 

  160. Lam YA, Pickart CM, Alban A, Landon M, Jamieson C et al (2000) Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci USA 97:9902–9906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552–1555

    Article  CAS  PubMed  Google Scholar 

  162. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  PubMed  Google Scholar 

  163. Balch WE, Sznajder JI, Budinger S, Finley D, Laposky AD et al (2014) Malfolded protein structure and proteostasis in lung diseases. Am J Respir Crit Care Med 189:96–103

    PubMed  PubMed Central  Google Scholar 

  164. Kitamura A, Inada N, Kubota H, Matsumoto G, Kinjo M, Morimoto RI, Nagata K (2014) Dysregulation of the proteasome increases the toxicity of ALS-linked mutant SOD1. Genes Cells 19:209–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kipen HM, Gandhi S, Rich DQ, Ohman-Strickland P, Laumbach R et al (2011) Acute decreases in proteasome pathway activity after inhalation of fresh diesel exhaust or secondary organic aerosol. Environ Health Perspect 119:658–663

    Article  CAS  PubMed  Google Scholar 

  166. van Rijt SH, Keller IE, John G, Kohse K, Yildirim AÖ, Eickelberg O, Meiners S (2012) Acute cigarette smoke exposure impairs proteasome function in the lung. Am J Physiol Lung Cell Mol Physiol 303:L814–L823

    Article  PubMed  CAS  Google Scholar 

  167. Gorbea C, Goellner GM, Teter K, Holmes RK, Rechsteiner M (2004) Characterization of mammalian Ecm29, a 26 S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 279:54849–54861

    Article  CAS  PubMed  Google Scholar 

  168. Kajava AV, Gorbea C, Ortega J, Rechsteiner M, Steven AC (2004) New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J Struct Biol 146:425–430

    Article  CAS  PubMed  Google Scholar 

  169. Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M et al (2002) Multiple associated proteins regulate proteasome structure and function. Mol Cell 10:495–507

    Article  CAS  PubMed  Google Scholar 

  170. Kleijnen MF, Roelofs J, Park S, Hathaway NA, Glickman M, King RW, Finley D (2007) Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14:1180–1188

    Article  CAS  PubMed  Google Scholar 

  171. Lee SYC, De la Mota-Peynado A, Roelofs J (2011) Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem 286:36641–36651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wani PS, Suppahia A, Capalla X, Ondracek A, Roelofs J (2016) Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Sci Rep 6:27873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Niewienda A, Janek K, Jechow K, Enenkel C, Lehmann A (2010) Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell 38:879–888

    Article  PubMed  CAS  Google Scholar 

  174. Park S, Kim W, Tian G, Gygi SP, Finley D (2011) Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 286:36652–36666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. De La Mota-Peynado A, Lee SYCC, Pierce BM, Wani P, Singh CR, Roelofs J (2013) The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem 288:29467–29481

    Article  CAS  Google Scholar 

  176. Bousquet-Dubouch MP, Nguen S, Bouyssié D, Burlet-Schiltz O, French SW, Monsarrat B, Bardag-Gorce F (2009) Chronic ethanol feeding affects proteasome-interacting proteins. Proteomics 9:3609–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Haratake K, Sato A, Tsuruta F, Chiba T (2016) KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition. J Biochem (Tokyo) 159:609–618

    Article  CAS  Google Scholar 

  178. Gorbea C, Pratt G, Ustrell V, Bell R, Sahasrabudhe S, Hughes RE, Rechsteiner M (2010) A protein interaction network for Ecm29 links the 26 S proteasome to molecular motors and endosomal components. J Biol Chem 285:31616–31633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gorbea C, Rechsteiner M, Vallejo JG, Bowles NE (2013) Depletion of the 26S proteasome adaptor Ecm29 increases toll-like receptor 3 signaling. Sci Signal 6:ra86

    PubMed  Google Scholar 

  180. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC et al (2018) Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 24:724–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Miettinen TP, Peltier J, Härtlova A, Gierliński M, Jansen VM, Trost M, Björklund M (2018) Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. EMBO J 37:e98359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Ishida Y, Yamazaki K, Kato M, Goto Y, Naya Y et al (2015) MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker. Br J Cancer 113:1055–1065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J, Deshaies RJ (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Xie Y, Varshavsky A (2000) Physical association of ubiquitin ligases and the 26S proteasome. Proc Natl Acad Sci USA 97:2497–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Xie Y, Varshavsky A (2002) UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nat Cell Biol 4:1003–1007

    Article  CAS  PubMed  Google Scholar 

  186. Kulikov R, Letienne J, Kaur M, Grossman SR, Arts J, Blattner C (2010) Mdm2 facilitates the association of p53 with the proteasome. Proc Natl Acad Sci USA 107:10038–10043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kühnle S, Martínez-Noël G, Leclere F, Hayes SD, Harper JW, Howley PM (2018) Angelman syndrome-associated point mutations in the Zn2+-binding N-terminal (AZUL) domain of UBE3A ubiquitin ligase inhibit binding to the proteasome. J Biol Chem 293:18387–18399

    Article  PubMed  PubMed Central  Google Scholar 

  188. Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y et al (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127:1401–1413

    Article  CAS  PubMed  Google Scholar 

  189. Harrigan JA, Jacq X, Martin NM, Jackson SP (2018) Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 17:57–78

    Article  CAS  PubMed  Google Scholar 

  190. Lee BH, Lee MJ, Park S, Oh DC, Elsasser S et al (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhang Z, Krutchinsky A, Endicott S, Realini C, Rechsteiner M, Standing KG (1999) Proteasome activator 11S REG or PA28: recombinant REG alpha/REG beta hetero-oligomers are heptamers. Biochemistry 38:5651–5658

    Article  CAS  PubMed  Google Scholar 

  192. Huber EMM, Groll M (2017) The mammalian proteasome activator PA28 forms an asymmetric α4β3 complex. Structure 25:1473–1480.e3

    Article  CAS  PubMed  Google Scholar 

  193. Preckel T, Fung-Leung WP, Cai Z, Vitiello A, Salter-Cid L et al (1999) Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science 286:2162–2165

    Article  CAS  PubMed  Google Scholar 

  194. Cascio P (2014) PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules 4:566–584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Mao I, Liu J, Li X, Luo H (2008) REGgamma, a proteasome activator and beyond? Cell Mol Life Sci 65:3971–3980

    Article  CAS  PubMed  Google Scholar 

  196. Knowlton JR, Johnston SC, Whitby FG, Realini C, Zhang Z, Rechsteiner M, Hill CP (1997) Structure of the proteasome activator REGalpha (PA28alpha). Nature 390:639–643

    Article  CAS  PubMed  Google Scholar 

  197. Realini C, Jensen CC, Zhang Z, Johnston SC, Knowlton JR, Hill CP, Rechsteiner M (1997) Characterization of recombinant REGalpha, REGbeta, and REGgamma proteasome activators. J Biol Chem 272:25483–25492

    Article  CAS  PubMed  Google Scholar 

  198. Xie SC, Metcalfe RD, Hanssen E, Yang T, Gillett DL et al (2019) The structure of the PA28-20S proteasome complex from Plasmodium falciparum and implications for proteostasis. Nat Microbiol 4:1990–2000

    Article  CAS  PubMed  Google Scholar 

  199. Minami Y, Kawasaki H, Minami M, Tanahashi N, Tanaka K, Yahara I (2000) A critical role for the proteasome activator PA28 in the Hsp90-dependent protein refolding. J Biol Chem 275:9055–9061

    Article  CAS  PubMed  Google Scholar 

  200. Minami M, Shinozaki F, Suzuki M, Yoshimatsu K, Ichikawa Y, Minami Y (2006) The proteasome activator PA28 functions in collaboration with Hsp90 in vivo. Biochem Biophys Res Commun 344:1315–1319

    Article  CAS  PubMed  Google Scholar 

  201. Kudriaeva A, Kuzina ES, Zubenko O, Smirnov IV, Belogurov A (2019) Charge-mediated proteasome targeting. FASEB J 33:6852–6866

    Article  CAS  PubMed  Google Scholar 

  202. Cascio P, Call M, Petre BM, Walz T, Goldberg AL (2002) Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J 21:2636–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Li J, Rechsteiner M (2001) Molecular dissection of the 11S REG (PA28) proteasome activators. Biochimie 83:373–383

    Article  CAS  PubMed  Google Scholar 

  204. Sugiyama M, Sahashi H, Kurimoto E, Takata S, Yagi H et al (2013) Spatial arrangement and functional role of α subunits of proteasome activator PA28 in hetero-oligomeric form. Biochem Biophys Res Commun 432:141–145

    Article  CAS  PubMed  Google Scholar 

  205. Rock KL, York IA, Saric T, Goldberg AL (2002) Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol 80:1–70

    Article  CAS  PubMed  Google Scholar 

  206. Murata S, Udono H, Tanahashi N, Hamada N, Watanabe K et al (2001) Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta. EMBO J 20:5898–5907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Barton LF, Runnels HA, Schell TD, Cho Y, Gibbons R et al (2004) Immune defects in 28-kDa proteasome activator gamma-deficient mice. J Immunol 172:3948–3954

    Article  CAS  PubMed  Google Scholar 

  208. de Graaf N, van Helden MJG, Textoris-Taube K, Chiba T, Topham DJ et al (2011) PA28 and the proteasome immunosubunits play a central and independent role in the production of MHC class I-binding peptides in vivo. Eur J Immunol 41:926–935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Raule M, Cerruti F, Benaroudj N, Migotti R, Kikuchi J et al (2014) PA28αβ reduces size and increases hydrophilicity of 20S immunoproteasome peptide products. Chem Biol 21:470–480

    Article  CAS  PubMed  Google Scholar 

  210. Yamano T, Sugahara H, Mizukami S, Murata S, Chiba T et al (2008) Allele-selective effect of PA28 in MHC class I antigen processing. J Immunol 181:1655–1664

    Article  CAS  PubMed  Google Scholar 

  211. Seeger M, Ferrell K, Frank R, Dubiel W (1997) HIV-1 tat inhibits the 20 S proteasome and its 11 S regulator-mediated activation. J Biol Chem 272:8145–8148

    Article  CAS  PubMed  Google Scholar 

  212. Stohwasser R, Holzhütter HG, Lehmann U, Henklein P, Kloetzel PM (2003) Hepatitis B virus HBx peptide 116-138 and proteasome activator PA28 compete for binding to the proteasome alpha4/MC6 subunit. Biol Chem 384:39–49

    Article  CAS  PubMed  Google Scholar 

  213. De Leo A, Matusali G, Arena G, Di Renzo L, Mattia E (2010) Epstein-Barr virus lytic cycle activation alters proteasome subunit expression in Burkitt’s lymphoma cells. Biol Chem 391:1041–1046

    PubMed  Google Scholar 

  214. Gu Y, Xu K, Torre C, Samur M, Barwick BG et al (2017) 14-3-3ζ binds the proteasome, limits proteolytic function, and enhances sensitivity to proteasome inhibitors. Leukemia 32:744–751

    Article  PubMed  CAS  Google Scholar 

  215. Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M et al (1999) Growth retardation in mice lacking the proteasome activator PA28gamma. J Biol Chem 274:38211–38215

    Article  CAS  PubMed  Google Scholar 

  216. Zhang Y, Liu S, Zuo Q, Wu L, Ji L et al (2015) Oxidative challenge enhances REGγ-proteasome-dependent protein degradation. Free Radic Biol Med 82:42–49

    Article  CAS  PubMed  Google Scholar 

  217. Huang L, Haratake K, Miyahara H, Chiba T (2016) Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility. Sci Rep 6:23171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Levy-Barda A, Lerenthal Y, Davis AJ, Chung YM, Essers J et al (2011) Involvement of the nuclear proteasome activator PA28γ in the cellular response to DNA double-strand breaks. Cell Cycle 10:4300–4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Li L, Zhao D, Wei H, Yao L, Dang Y et al (2013) REGγ deficiency promotes premature aging via the casein kinase 1 pathway. Proc Natl Acad Sci USA 110:11005–11010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Baldin V, Militello M, Thomas Y, Doucet C, Fic W et al (2008) A novel role for PA28gamma-proteasome in nuclear speckle organization and SR protein trafficking. Mol Biol Cell 19:1706–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Cioce M, Boulon S, Matera AG, Lamond AI (2006) UV-induced fragmentation of Cajal bodies. J Cell Biol 175:401–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zannini L, Buscemi G, Fontanella E, Lisanti S, Delia D (2009) REGgamma/PA28gamma proteasome activator interacts with PML and Chk2 and affects PML nuclear bodies number. Cell Cycle 8:2399–2407

    Article  CAS  PubMed  Google Scholar 

  223. Fesquet D, Llères D, Viganò C, Méchali F, Boulon S et al (2019) The 20S proteasome activator PA28γ controls the compaction of HP1β-linked heterochromatin. bioRxiv. https://doi.org/10.1101/716332

  224. Zannini L, Lecis D, Buscemi G, Carlessi L, Gasparini P et al (2008) REGgamma proteasome activator is involved in the maintenance of chromosomal stability. Cell Cycle 7:504–512

    Article  CAS  PubMed  Google Scholar 

  225. Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM (2007) Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol Cell 26:843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O’Malley BW (2007) Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell 26:831–842

    Article  PubMed  CAS  Google Scholar 

  227. Kobayashi T, Wang J, Al-Ahmadie HA, Abate-Shen C (2013) ARF regulates the stability of p16 protein via REGγ-dependent proteasome degradation. Mol Cancer Res 11:828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Li X, Lonard DM, Jung SY, Malovannaya A, Feng Q et al (2006) The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell 124:381–392

    Article  CAS  PubMed  Google Scholar 

  229. Ying H, Furuya F, Zhao L, Araki O, West BL et al (2006) Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone beta receptor inhibits mitotic progression. J Clin Invest 116:2972–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Furuya F, Ying H, Zhao L, Cheng SY (2007) Novel functions of thyroid hormone receptor mutants: beyond nucleus-initiated transcription. Steroids 72:171–179

    Article  CAS  PubMed  Google Scholar 

  231. Zhang Z, Zhang R (2008) Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation. EMBO J 27:852–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Li S, Jiang C, Pan J, Wang X, Jin J et al (2015) Regulation of c-Myc protein stability by proteasome activator REGγ. Cell Death Differ 22:1000–1011

    Article  CAS  PubMed  Google Scholar 

  233. Guo J, Hao J, Jiang H, Jin J, Wu H, Jin Z, Li Z (2017) Proteasome activator subunit 3 promotes pancreatic cancer growth via c-Myc-glycolysis signaling axis. Cancer Lett 386:161–167

    Article  CAS  PubMed  Google Scholar 

  234. Li L, Dang Y, Zhang J, Yan W, Zhai W et al (2015) REGγ is critical for skin carcinogenesis by modulating the Wnt/β-catenin pathway. Nat Commun 6:6875

    Article  CAS  PubMed  Google Scholar 

  235. Moncsek A, Gruner M, Meyer H, Lehmann A, Kloetzel PM, Stohwasser R (2015) Evidence for anti-apoptotic roles of proteasome activator 28γ via inhibiting caspase activity. Apoptosis 20:1211–1228

    Article  CAS  PubMed  Google Scholar 

  236. Araya R, Takahashi R, Nomura Y (2002) Yeast two-hybrid screening using constitutive-active caspase-7 as bait in the identification of PA28gamma as an effector caspase substrate. Cell Death Differ 9:322–328

    Article  CAS  PubMed  Google Scholar 

  237. Okamura T, Taniguchi SI, Ohkura T, Yoshida A, Shimizu H et al (2003) Abnormally high expression of proteasome activator-gamma in thyroid neoplasm. J Clin Endocrinol Metab 88:1374–1383

    Article  CAS  PubMed  Google Scholar 

  238. Wang X, Tu S, Tan J, Tian T, Ran L, Rodier JF, Ren G (2011) REG gamma: a potential marker in breast cancer and effect on cell cycle and proliferation of breast cancer cell. Med Oncol 28:31–41

    Article  PubMed  CAS  Google Scholar 

  239. Zhang M, Gan L, Ren GS (2012) REGγ is a strong candidate for the regulation of cell cycle, proliferation and the invasion by poorly differentiated thyroid carcinoma cells. Braz J Med Biol Res 45:459–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. He J, Cui L, Zeng Y, Wang G, Zhou P et al (2012) REGγ is associated with multiple oncogenic pathways in human cancers. BMC Cancer 12:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ali A, Wang Z, Fu J, Ji L, Liu J et al (2013) Differential regulation of the REGγ-proteasome pathway by p53/TGF-β signalling and mutant p53 in cancer cells. Nat Commun 4:2667

    Article  PubMed  CAS  Google Scholar 

  242. Wan ZX, Yuan DM, Zhuo YM, Yi X, Zhou J, Xu ZX, Zhou JL (2014) The proteasome activator PA28γ, a negative regulator of p53, is transcriptionally up-regulated by p53. Int J Mol Sci 15:2573–2584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Xu J, Zhou L, Ji L, Chen F, Fortmann K et al (2016) The REGγ-proteasome forms a regulatory circuit with IκBɛ and NFκB in experimental colitis. Nat Commun 7:10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Xu X, Liu D, Ji N, Li T, Li L et al (2015) A novel transcript variant of proteasome activator 28γ: identification and function in oral cancer cells. Int J Oncol 47:188–194

    Article  CAS  PubMed  Google Scholar 

  245. Sanchez N, Gallagher M, Lao N, Gallagher C, Clarke C et al (2013) MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3. PloS One 8:e65671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Xiong S, Zheng Y, Jiang P, Liu R, Liu X et al (2014) PA28gamma emerges as a novel functional target of tumour suppressor microRNA-7 in non-small-cell lung cancer. Br J Cancer 110:353–362

    Article  CAS  PubMed  Google Scholar 

  247. Shi Y, Luo X, Li P, Tan J, Wang X, Xiang T, Ren G (2015) miR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGγ. Cancer Lett 358:27–36

    Article  CAS  PubMed  Google Scholar 

  248. Chen S, Wang L, Yao X, Chen H, Xu C et al (2017) miR-195-5p is critical in REGγ-mediated regulation of wnt/β-catenin pathway in renal cell carcinoma. Oncotarget 8:63986–64000

    PubMed  PubMed Central  Google Scholar 

  249. Magni M, Ruscica V, Buscemi G, Kim JE, Nachimuthu BT et al (2014) Chk2 and REGγ-dependent DBC1 regulation in DNA damage induced apoptosis. Nucleic Acids Res 42:13150–13160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Hagemann C, Patel R, Blank JL (2003) MEKK3 interacts with the PA28 gamma regulatory subunit of the proteasome. Biochem J 373:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Gao G, Wong J, Zhang J, Mao I, Shravah J et al (2010) Proteasome activator REGgamma enhances coxsackieviral infection by facilitating p53 degradation. J Virol 84:11056–11066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Wu Y, Wang L, Zhou P, Wang G, Zeng Y et al (2011) Regulation of REGγ cellular distribution and function by SUMO modification. Cell Res 21:807–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Liu J, Wang Y, Li L, Zhou L, Wei H et al (2013) Site-specific acetylation of the proteasome activator REGγ directs its heptameric structure and functions. J Biol Chem 288:16567–16578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Jonik-Nowak B, Menneteau T, Fesquet D, Baldin V, Bonne-Andrea C et al (2018) PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ. Proc Natl Acad Sci USA 115:E6477–E6486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Xie T, Chen H, Shen S, Huang T, Huang B et al (2019) Proteasome activator REGγ promotes inflammation in Leydig cells via IkBε signaling. Int J Mol Med 43:1961–1968

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Sun J, Luan Y, Xiang D, Tan X, Chen H et al (2016) The 11S proteasome subunit PSME3 is a positive feedforward regulator of NF-κB and important for host defense against bacterial pathogens. Cell Rep 14:737–749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Yan Q, Sharma-Kuinkel BK, Deshmukh H, Tsalik EL, Cyr DD et al (2014) Dusp3 and Psme3 are associated with murine susceptibility to Staphylococcus aureus infection and human sepsis. PLoS Pathog 10:e1004149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Wang Q, Gao X, Yu T, Yuan L, Dai J et al (2018) REGγ controls hippo signaling and reciprocal NF-κB-YAP regulation to promote colon cancer. Clin Cancer Res 24:2015–2025

    Article  CAS  PubMed  Google Scholar 

  259. Chen S, Wang Q, Wang L, Chen H, Gao X et al (2018) REGγ deficiency suppresses tumor progression via stabilizing CK1ε in renal cell carcinoma. Cell Death Dis 9:627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Liu J, Yu G, Zhao Y, Zhao D, Wang Y et al (2010) REGgamma modulates p53 activity by regulating its cellular localization. J Cell Sci 123:4076–4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kwak J, Tiwari I, Jang KL (2017) Hepatitis C virus core activates proteasomal activator 28 gamma expression via upregulation of p53 levels to control virus propagation. J Gen Virol 98:56–67

    Article  CAS  PubMed  Google Scholar 

  262. Yeom S, Jeong H, Kim SS, Jang KL (2018) Hepatitis B virus X protein activates proteasomal activator 28 gamma expression via upregulation of p53 levels to stimulate virus replication. J Gen Virol 99:655–666

    Article  CAS  PubMed  Google Scholar 

  263. Wang H, Bao W, Jiang F, Che Q, Chen Z et al (2015) Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGγ. Cancer Lett 360:269–279

    Article  CAS  PubMed  Google Scholar 

  264. Lv Y, Meng B, Dong H, Jing T, Wu N et al (2016) Up-regulation of GSK3β contributes to brain disorders in elderly REGγ-knockout mice. Neuropsychopharmacology 41:1340–1349

    Article  CAS  PubMed  Google Scholar 

  265. Chen H, Gao X, Sun Z, Wang Q, Zuo D et al (2017) REGγ accelerates melanoma formation by regulating Wnt/β-catenin signaling pathway. Exp Dermatol 26:1118–1124

    Article  CAS  PubMed  Google Scholar 

  266. Kanai K, Aramata S, Katakami S, Yasuda K, Kataoka K (2011) Proteasome activator PA28{gamma} stimulates degradation of GSK3-phosphorylated insulin transcription activator MAFA. J Mol Endocrinol 47:119–127

    Article  CAS  PubMed  Google Scholar 

  267. Jiao C, Li L, Zhang P, Zhang L, Li K et al (2020) REGγ ablation impedes dedifferentiation of anaplastic thyroid carcinoma and accentuates radio-therapeutic response by regulating the Smad7-TGF-β pathway. Cell Death Differ 27:497–508

    Article  CAS  PubMed  Google Scholar 

  268. Liu S, Lai L, Zuo Q, Dai F, Wu L et al (2014) PKA turnover by the REGγ-proteasome modulates FoxO1 cellular activity and VEGF-induced angiogenesis. J Mol Cell Cardiol 72:28–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Xie Y, Li X, Ge J (2019) Expression of REGγ in atherosclerotic plaques and promotes endothelial cells apoptosis via the cyclophilin A pathway indicates functional implications in atherogenesis. Cell Cycle 18:2083–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Fan J, Liu L, Liu Q, Cui Y, Yao B et al (2019) CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat Commun 10:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Dong S, Jia C, Zhang S, Fan G, Li Y et al (2013) The REGγ proteasome regulates hepatic lipid metabolism through inhibition of autophagy. Cell Metab 18:380–391

    Article  CAS  PubMed  Google Scholar 

  272. Jiang TX, Zou JB, Zhu QQ, Liu CH, Wang GF et al (2019) SIP/CacyBP promotes autophagy by regulating levels of BRUCE/Apollon, which stimulates LC3-I degradation. Proc Natl Acad Sci USA 116:13404–13413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Bartke T, Pohl C, Pyrowolakis G, Jentsch S (2004) Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol Cell 14:801–811

    Article  CAS  PubMed  Google Scholar 

  274. Doueiri R, Anupam R, Kvaratskhelia M, Green KB, Lairmore MD, Green PL (2012) Comparative host protein interactions with HTLV-1 p30 and HTLV-2 p28: insights into difference in pathobiology of human retroviruses. Retrovirology 9:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Ko NL, Taylor JM, Bellon M, Bai XT, Shevtsov SP, Dundr M, Nicot C (2013) PA28γ is a novel corepressor of HTLV-1 replication and controls viral latency. Blood 121:791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Moriishi K, Okabayashi T, Nakai K, Moriya K, Koike K et al (2003) Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein. J Virol 77:10237–10249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Moriishi K, Mochizuki R, Moriya K, Miyamoto H, Mori Y et al (2007) Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci USA 104:1661–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Miyamoto H, Moriishi K, Moriya K, Murata S, Tanaka K et al (2007) Involvement of the PA28gamma-dependent pathway in insulin resistance induced by hepatitis C virus core protein. J Virol 81:1727–1735

    Article  CAS  PubMed  Google Scholar 

  279. Ustrell V, Hoffman L, Pratt G, Rechsteiner M (2002) PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 21:3516–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Blickwedehl J, McEvoy S, Wong I, Kousis P, Clements J et al (2007) Proteasomes and proteasome activator 200 kDa (PA200) accumulate on chromatin in response to ionizing radiation. Radiat Res 167:663–674

    Article  CAS  PubMed  Google Scholar 

  281. Schmidt M, Haas W, Crosas B, Santamaria PG, Gygi SP, Walz T, Finley D (2005) The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12:294–303

    Article  CAS  PubMed  Google Scholar 

  282. Sadre-Bazzaz K, Whitby FG, Robinson H, Formosa T, Hill CP (2010) Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol Cell 37:728–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Ortega J, Bernard Heymann J, Kajava AV, Ustrell V, Rechsteiner M, Steven AC (2005) The axial channel of the 20S proteasome opens upon binding of the PA200 activator. J Mol Biol 346:1221–1227

    Article  CAS  PubMed  Google Scholar 

  284. Fehlker M, Wendler P, Lehmann A, Enenkel C (2003) Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep 4:959–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Marques AJ, Glanemann C, Ramos PC, Dohmen RJ (2007) The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J Biol Chem 282:34869–34876

    Article  CAS  PubMed  Google Scholar 

  286. Doherty KM, Pride LD, Lukose J, Snydsman BE, Charles R et al (2012) Loss of a 20S proteasome activator in saccharomyces cerevisiae downregulates genes important for genomic integrity, increases DNA damage, and selectively sensitizes cells to agents with diverse mechanisms of action. G3 2:943–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Tar K, Dange T, Yang C, Yao Y, Bulteau AL et al (2014) Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1. J Biol Chem 289:12145–12156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R et al (2006) Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol 26:2999–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Mandemaker IK, Geijer ME, Kik I, Bezstarosti K, Rijkers E et al (2018) DNA damage-induced replication stress results in PA200-proteasome-mediated degradation of acetylated histones. EMBO Rep 19:e45566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  290. Blickwedehl J, Agarwal M, Seong C, Pandita RK, Melendy T et al (2008) Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability. Proc Natl Acad Sci USA 105:16165–16170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Blickwedehl J, Olejniczak S, Cummings R, Sarvaiya N, Mantilla A et al (2012) The proteasome activator PA200 regulates tumor cell responsiveness to glutamine and resistance to ionizing radiation. Mol Cancer Res 10:937–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Wang F, Ma H, Liang WJ, Yang JJ, Wang XQ et al (2017) Lovastatin upregulates microRNA-29b to reduce oxidative stress in rats with multiple cardiovascular risk factors. Oncotarget 8:9021–9034

    PubMed  PubMed Central  Google Scholar 

  293. Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33

    Article  CAS  PubMed  Google Scholar 

  294. McCutchen-Maloney SL, Matsuda K, Shimbara N, Binns DD, Tanaka K, Slaughter CA, DeMartino GN (2000) cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J Biol Chem 275:18557–18565

    Article  CAS  PubMed  Google Scholar 

  295. Zaiss DMW, Standera S, Kloetzel PMPM, Sijts AJAM (2002) PI31 is a modulator of proteasome formation and antigen processing. Proc Natl Acad Sci USA 99:14344–14349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Bader M, Benjamin S, Wapinski OL, Smith DM, Goldberg AL, Steller H (2011) A conserved F box regulatory complex controls proteasome activity in Drosophila. Cell 145:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Yashiroda H, Toda Y, Otsu S, Takagi K, Mizushima T et al (2014) N-terminal α7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function. Mol Cell Biol 35:141–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Corridoni D, Shiraishi S, Chapman T, Steevels T, Muraro D et al (2019) NOD2 and TLR2 signal via TBK1 and PI31 to direct cross-presentation and CD8 T cell responses. Front Immunol 10:958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Kirk R, Laman H, Knowles PP, Murray-Rust J, Lomonosov M, Meziane EK, McDonald NQ (2008) Structure of a conserved dimerization domain within the F-box protein Fbxo7 and the PI31 proteasome inhibitor. J Biol Chem 283:22325–22335

    Article  CAS  PubMed  Google Scholar 

  300. Cho-Park PF, Steller H (2013) Proteasome regulation by ADP-ribosylation. Cell 153:614–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Merzetti EM, Dolomount LA, Staveley BE (2017) The FBXO7 homologue nutcracker and binding partner PI31 in Drosophila melanogaster models of Parkinson’s disease. Genome 60:46–54

    Article  CAS  PubMed  Google Scholar 

  302. Sherva R, Baldwin CT, Inzelberg R, Vardarajan B, Cupples LA et al (2011) Identification of novel candidate genes for Alzheimer’s disease by autozygosity mapping using genome wide SNP data. J Alzheimers Dis 23:349–359

    Article  CAS  PubMed  Google Scholar 

  303. Chaber R, Gurgul A, Wróbel G, Haus O, Tomoń A et al (2017) Whole-genome DNA methylation characteristics in pediatric precursor B cell acute lymphoblastic leukemia (BCP ALL). PloS One 12:e0187422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  304. Gomes AV (2013) Genetics of proteasome diseases. Scientifica 2013:1–30

    Article  CAS  Google Scholar 

  305. Liu Y, Ramot Y, Torrelo A, Paller AS, Si N et al (2012) Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 64:895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T et al (2011) Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci USA 108:14914–14919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD et al (2010) PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 87:866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I et al (2011) A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Immunol 121:4150–4160

    CAS  Google Scholar 

  309. Torrelo A, Patel S, Colmenero I, Gurbindo D, Lendínez F et al (2010) Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome. J Am Acad Dermatol 62:489–495

    Article  PubMed  Google Scholar 

  310. Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E et al (2015) Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest 125:4196–4211

    Article  PubMed  PubMed Central  Google Scholar 

  311. Canna SW, Goldbach-Mansky R (2015) New monogenic autoinflammatory diseases—a clinical overview. Semin Immunopathol 37:387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Torrelo A (2017) CANDLE syndrome as a paradigm of proteasome-related autoinflammation. Front Immunol 8:927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  313. Shwin KW, Lee CCR, Goldbach-Mansky R (2017) Dermatologic manifestations of monogenic autoinflammatory diseases. Dermatol Clin 35:21–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Kim H, Sanchez GAM, Goldbach-Mansky R (2016) Insights from Mendelian interferonopathies: comparison of CANDLE, SAVI with AGS, monogenic lupus. J Mol Med 94:1111–1127

    Article  CAS  PubMed  Google Scholar 

  315. McDermott A, Jacks J, Kessler M, Emanuel PD, Gao L (2015) Proteasome-associated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int J Dermatol 54:121–129

    Article  PubMed  Google Scholar 

  316. Sanchez GAM, Reinhardt A, Ramsey S, Wittkowski H, Hashkes PJ et al (2018) JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest 128:3041–3052

    Article  PubMed  PubMed Central  Google Scholar 

  317. Boyadzhiev M, Marinov L, Boyadzhiev V, Iotova V, Aksentijevich I, Hambleton S (2019) Disease course and treatment effects of a JAK inhibitor in a patient with CANDLE syndrome. Pediatr Rheumatol Online J 17:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. McDermott A, Jesus AA, Liu Y, Kim P, Jacks J et al (2013) A case of proteasome-associated auto-inflammatory syndrome with compound heterozygous mutations. J Am Acad Dermatol 69:e29–e32

    Article  PubMed  PubMed Central  Google Scholar 

  319. Contreras-Cubas C, Cárdenas-Conejo A, Rodríguez-Velasco A, García-Ortiz H, Orozco L, Baca V (2018) A homozygous mutation in the PSMB8 gene in a case with proteasome-associated autoinflammatory syndrome. Scand J Rheumatol 47:251–254

    Article  CAS  PubMed  Google Scholar 

  320. Shi X, Xiang X, Wang Z, Ma L, Xu Z (2019) Chinese case of Nakajo-Nishimura syndrome with a novel mutation of the PSMB8 gene. J Dermatol 46:e160–e161

    Article  PubMed  Google Scholar 

  321. Poli MC, Ebstein F, Nicholas SK, de Guzman MM, Forbes LR et al (2018) Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome. Am J Hum Genet 102:1126–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. de Jesus AA, Brehm A, VanTries R, Pillet P, Parentelli AS et al (2019) Novel proteasome assembly chaperone mutations in PSMG2/PAC2, cause the autoinflammatory interferonopathy, CANDLE/PRAAS4. J Allergy Clin Immunol 143:1939–1943.e8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  323. Kanazawa N (2012) Nakajo-Nishimura syndrome: an autoinflammatory disorder showing pernio-like rashes and progressive partial lipodystrophy. Allergol Int 61:197–206

    Article  CAS  PubMed  Google Scholar 

  324. Sotzny F, Schormann E, Kühlewindt I, Koch A, Brehm A et al (2016) TCF11/Nrf1-mediated induction of proteasome expression prevents cytotoxicity by rotenone. Antioxid Redox Signal 25:870–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Brehm A, Krüger E (2015) Dysfunction in protein clearance by the proteasome: impact on autoinflammatory diseases. Semin Immunopathol 37:323–333

    Article  CAS  PubMed  Google Scholar 

  326. Honda-Ozaki F, Terashima M, Niwa A, Saiki N, Kawasaki Y et al (2018) Pluripotent stem cell model of Nakajo-Nishimura syndrome untangles proinflammatory pathways mediated by oxidative stress. Stem Cell Reports 10:1835–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Kanazawa N, Honda-Ozaki F, Saito MK (2019) Induced pluripotent stem cells representing Nakajo-Nishimura syndrome. Inflamm Regen 39:11

    Article  PubMed  PubMed Central  Google Scholar 

  328. Dahlqvist J, Klar J, Tiwari N, Schuster J, Törmä H et al (2010) A single-nucleotide deletion in the POMP 5′ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am J Hum Genet 86:596–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Dahlqvist J, Törmä H, Badhai J, Dahl N (2012) siRNA silencing of proteasome maturation protein (POMP) activates the unfolded protein response and constitutes a model for KLICK genodermatosis. PLoS One 7:e29471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Küry S, Besnard T, Ebstein F, Khan TN, Gambin T et al (2017) De novo disruption of the proteasome regulatory subunit PSMD12 causes a syndromic neurodevelopmental disorder. Am J Hum Genet 100:352–363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  331. Korovila I, Hugo M, Castro JP, Weber D, Höhn A, Grune T, Jung T (2017) Proteostasis, oxidative stress and aging. Redox Biol 13:550–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Hipp MS, Park SH, Hartl FU (2014) Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 24:506–514

    Article  CAS  PubMed  Google Scholar 

  333. Pajares M, Jiménez-Moreno N, Dias IHK, Debelec B, Vucetic M et al (2015) Redox control of protein degradation. Redox Biol 6:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Asp Med 30:191–296

    Article  CAS  Google Scholar 

  335. Chapple SJ, Siowand RCM, Mann GE (2012) Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging. Int J Biochem Cell Biol 44:1315–1320

    Article  CAS  PubMed  Google Scholar 

  336. Lefaki M, Papaevgeniou N, Chondrogianni N (2017) Redox regulation of proteasome function. Redox Biol 13:452–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Ullrich O, Reinheckel T, Sitte N, Hass R, Grune T, Davies KJ (1999) Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc Natl Acad Sci USA 96:6223–6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Moscovitz O, Ben-Nissan G, Fainer I, Pollack D, Mizrachi L, Sharon M (2015) The Parkinson’s-associated protein DJ-1 regulates the 20S proteasome. Nat Commun 6:6609

    Article  CAS  PubMed  Google Scholar 

  339. Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, Davies KJA (2010) The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J 432:585–595

    Article  CAS  PubMed  Google Scholar 

  340. Hernebring M, Fredriksson A, Liljevald M, Cvijovic M, Norrman K et al (2013) Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28. Sci Rep 3:1381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  341. Pickering AM, Linder RA, Zhang H, Forman HJ, Davies KJA (2012) Nrf2 dependent induction of proteasome and Pa28αβ regulator is required for adaptation to oxidative stress. J Biol Chem 287:10021–10031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Li J, Powell SR, Wang X (2011) Enhancement of proteasome function by PA28α; overexpression protects against oxidative stress. FASEB J 25:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Lobanova ES, Finkelstein S, Li J, Travis AM, Hao Y et al (2018) Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nat Commun 9:1738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  344. Zuo Q, Cheng S, Huang W, Bhatti MZ, Xue Y et al (2017) REGγ contributes to regulation of hemoglobin and hemoglobin δ subunit. Oxidative Med Cell Longev 2017:7295319

    Article  CAS  Google Scholar 

  345. Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A et al (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142:613–624

    Article  CAS  PubMed  Google Scholar 

  346. Nathan JA, Spinnenhirn V, Schmidtke G, Basler M, Groettrup M, Goldberg AL (2013) Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. Cell 152:1184–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW (2003) Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 23:8786–8794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Ostrowska H, Kruszewski K, Kasacka I (2006) Immuno-proteasome subunit LMP7 is up-regulated in the ischemic kidney in an experimental model of renovascular hypertension. Int J Biochem Cell Biol 38:1778–1785

    Article  CAS  PubMed  Google Scholar 

  349. Mihalas BP, Bromfield EG, Sutherland JM, De Iuliis GN, McLaughlin EA, Aitken RJ, Nixon B (2018) Oxidative damage in naturally aged mouse oocytes is exacerbated by dysregulation of proteasomal activity. J Biol Chem 293:18944–18964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Choi ML, Gandhi S (2018) Crucial role of protein oligomerization in the pathogenesis of Alzheimer’s and Parkinson’s diseases. FEBS J 285:3631–3644

    Article  CAS  PubMed  Google Scholar 

  352. Thibaudeau TA, Anderson RT, Smith DM (2018) A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun 9:1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  353. Hipp MS, Patel CN, Bersuker K, Riley BE, Kaiser SE et al (2012) Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease. J Cell Biol 196:573–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Shen M, Schmitt S, Buac D, Dou QP (2013) Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin Ther Targets 17:1091–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Adams J (2002) Proteasome inhibition: a novel approach to cancer therapy. Trends Mol Med 8:S49–S54

    Article  CAS  PubMed  Google Scholar 

  356. Zhang X, Schulz R, Edmunds S, Krüger E, Markert E et al (2015) MicroRNA-101 suppresses tumor cell proliferation by acting as an endogenous proteasome inhibitor via targeting the proteasome assembly factor POMP. Mol Cell 59:243–257

    Article  CAS  PubMed  Google Scholar 

  357. Tsvetkov P, Adler J, Myers N, Biran A, Reuven N, Shaul Y (2018) Oncogenic addiction to high 26S proteasome level. Cell Death Dis 9:773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  358. Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y et al (2016) Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol 18:897–909

    Article  CAS  PubMed  Google Scholar 

  359. Voutsadakis IA (2017) Proteasome expression and activity in cancer and cancer stem cells. Tumor Biol 39:101042831769224

    Article  CAS  Google Scholar 

  360. Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z et al (2019) Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol 15:681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Tripathi SC, Peters HL, Taguchi A, Katayama H, Wang H et al (2016) Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proc Natl Acad Sci USA 113:E1555–E1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Chen S, Wang L, Xu C, Chen H, Peng B et al (2017) Knockdown of REGγ inhibits proliferation by inducing apoptosis and cell cycle arrest in prostate cancer. Am J Transl Res 9:3787–3795

    CAS  PubMed  PubMed Central  Google Scholar 

  363. Liu S, Zheng LL, Zhu YM, Shen HJ, Zhong Q et al (2018) Knockdown of REGγ inhibits the proliferation and migration and promotes the apoptosis of multiple myeloma cells by downregulating NF-κB signal pathway. Hematology Amst Neth 23:277–283

    CAS  Google Scholar 

  364. Sun L, Fan G, Shan P, Qiu X, Dong S et al (2016) Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome. Nat Commun 7:12497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Keller M, Ebstein F, Bürger E, Textoris-Taube K, Gorny X et al (2015) The proteasome immunosubunits, PA28 and ER-aminopeptidase 1 protect melanoma cells from efficient MART-126-35-specific T-cell recognition. Eur J Immunol 45:3257–3268

    Article  CAS  PubMed  Google Scholar 

  366. Cerruti F, Martano M, Petterino C, Bollo E, Morello E et al (2007) Enhanced expression of interferon-gamma-induced antigen-processing machinery components in a spontaneously occurring cancer. Neoplasia 9:960–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Feng X, Jiang Y, Xie L, Jiang L, Li J et al (2016) Overexpression of proteasomal activator PA28α serves as a prognostic factor in oral squamous cell carcinoma. J Exp Clin Cancer Res 35:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  368. Chen JY, Xu L, Fang WM, Han JY, Wang K, Zhu KS (2017) Identification of PA28β as a potential novel biomarker in human esophageal squamous cell carcinoma. Tumour Biol 39:1010428317719780

    PubMed  Google Scholar 

  369. Morozov AV, Karpov VL (2019) Proteasomes and several aspects of their heterogeneity relevant to cancer. Front Oncol 9:761

    Article  PubMed  PubMed Central  Google Scholar 

  370. Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14:58–74

    Article  CAS  PubMed  Google Scholar 

  371. Mitch WE, Medina R, Grieber S, May RC, England BK et al (1994) Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest 93:2127–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Price SR, Bailey JL, Wang X, Jurkovitz C, England BK et al (1996) Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription. J Clin Invest 98:1703–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  CAS  PubMed  Google Scholar 

  374. Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819

    Article  CAS  PubMed  Google Scholar 

  375. Langen RCJ, Gosker HR, Remels AHV, Schols AMWJ (2013) Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Int J Biochem Cell Biol 45:2245–2256

    Article  CAS  PubMed  Google Scholar 

  376. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Zhang Y, Manning BD (2015) mTORC1 signaling activates NRF1 to increase cellular proteasome levels. Cell Cycle 14:2011–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Mearini G, Schlossarek S, Willis MS, Carrier L (2008) The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta 1782:749–763

    Article  CAS  PubMed  Google Scholar 

  379. Heitmeier T, Sydykov A, Lukas C, Vroom C, Korfei M et al (2020) Altered proteasome function in right ventricular hypertrophy. Cardiovasc Res 116:406–415

    PubMed  Google Scholar 

  380. Cellerino A, Ori A (2017) What have we learned on aging from omics studies? Semin Cell Dev Biol 70:177–189

    Article  CAS  PubMed  Google Scholar 

  381. López-Otín C, Blasco M, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  382. Morimoto RI, Cuervo AM (2014) Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S33–S38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Tomaru U, Takahashi S, Ishizu A, Miyatake Y, Gohda A et al (2012) Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am J Pathol 180:963–972

    Article  CAS  PubMed  Google Scholar 

  384. Mayor T, Sharon M, Glickman MH (2016) Tuning the proteasome to brighten the end of the journey. Am J Physiol Cell Physiol 311:C793–C804

    Article  PubMed  PubMed Central  Google Scholar 

  385. Gavilán MP, Castaño A, Torres M, Portavella M, Caballero C et al (2009) Age-related increase in the immunoproteasome content in rat hippocampus: molecular and functional aspects. J Neurochem 108:260–272

    Article  PubMed  CAS  Google Scholar 

  386. Ferrington DA, Husom AD, Thompson LV (2005) Altered proteasome structure, function, and oxidation in aged muscle. FASEB J 19:644–646

    Article  CAS  PubMed  Google Scholar 

  387. Caniard A, Ballweg K, Lukas C, Yildirim AÖ, Eickelberg O, Meiners S (2015) Proteasome function is not impaired in healthy aging of the lung. Aging 7:776–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Pickering AM, Lehr M, Miller RA (2015) Lifespan of mice and primates correlates with immunoproteasome expression. J Clin Invest 125:2059–2068

    Article  PubMed  PubMed Central  Google Scholar 

  389. Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES (2015) 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J 29:611–622

    Article  CAS  PubMed  Google Scholar 

  390. Nguyen NN, Rana A, Goldman C, Moore R, Tai J et al (2019) Proteasome β5 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster. Sci Rep 9:3170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  391. Rodriguez KA, Edrey YH, Osmulski P, Gaczynska M, Buffenstein R (2012) Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PloS One 7:e35890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES (2000) Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol 35:721–728

    Article  CAS  PubMed  Google Scholar 

  393. Chondrogianni N, Sakellari M, Lefaki M, Papaevgeniou N, Gonos ES (2014) Proteasome activation delays aging in vitro and in vivo. Free Radic Biol Med 71:303–320

    Article  CAS  PubMed  Google Scholar 

  394. Daniele S, Giacomelli C, Martini C (2018) Brain ageing and neurodegenerative disease: the role of cellular waste management. Biochem Pharmacol 158:207–216

    Article  CAS  PubMed  Google Scholar 

  395. Ross CA, Poirier MA (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6:891–898

    Article  CAS  PubMed  Google Scholar 

  396. Boland B, Yu WH, Corti O, Mollereau B, Henriques A et al (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17:660–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427–446

    Article  CAS  PubMed  Google Scholar 

  398. Paine SML, Anderson G, Bedford K, Lawler K, Mayer RJ, Lowe J, Bedford L (2013) Pale body-like inclusion formation and neurodegeneration following depletion of 26S proteasomes in mouse brain neurones are independent of α-synuclein. PloS One 8:e54711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH, Goldberg AL, Duff KE (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 22:46–53

    Article  CAS  PubMed  Google Scholar 

  400. Limanaqi F, Biagioni F, Gaglione A, Busceti CL, Fornai F (2019) A sentinel in the crosstalk between the nervous and immune system: the (immuno)-proteasome. Front Immunol 10:628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Waelter S, Boeddrich A, Lurz R, Scherzinger E, Lueder G, Lehrach H, Wanker EE (2001) Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 12:1393–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Wanderer J, Morton AJ (2007) Differential morphology and composition of inclusions in the R6/2 mouse and PC12 cell models of Huntington’s disease. Histochem Cell Biol 127:473–484

    Article  CAS  PubMed  Google Scholar 

  403. Seo H, Sonntag KC, Kim W, Cattaneo E, Isacson O (2007) Proteasome activator enhances survival of Huntington’s disease neuronal model cells. PLoS One 2:e238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  404. Jeon J, Kim W, Jang J, Isacson O, Seo H (2016) Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington’s disease YAC128 mice. Neuroscience 324:20–28

    Article  CAS  PubMed  Google Scholar 

  405. Bett JS, Goellner GM, Woodman B, Pratt G, Rechsteiner M, Bates GP (2006) Proteasome impairment does not contribute to pathogenesis in R6/2 Huntington’s disease mice: exclusion of proteasome activator REGgamma as a therapeutic target. Hum Mol Genet 15:33–44

    Article  CAS  PubMed  Google Scholar 

  406. McNaught KSP, Jnobaptiste R, Jackson T, Jengelley TA (2010) The pattern of neuronal loss and survival may reflect differential expression of proteasome activators in Parkinson’s disease. Synapse 64:241–250

    Article  CAS  PubMed  Google Scholar 

  407. Drews O, Taegtmeyer H (2014) Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid Redox Signal 21:2322–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Drews O (2014) The left and right ventricle in the grip of protein degradation: similarities and unique patterns in regulation. J Mol Cell Cardiol 72:52–55

    Article  CAS  PubMed  Google Scholar 

  409. Zong C, Gomes AV, Drews O, Li X, Young GW et al (2006) Regulation of murine cardiac 20S proteasomes: role of associating partners. Circ Res 99:372–380

    Article  CAS  PubMed  Google Scholar 

  410. Ranek MJ, Zheng H, Huang W, Kumarapeli AR, Li J, Liu J, Wang X (2015) Genetically induced moderate inhibition of 20S proteasomes in cardiomyocytes facilitates heart failure in mice during systolic overload. J Mol Cell Cardiol 85:273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Chen Q, Liu JB, Horak KM, Zheng H, Kumarapeli ARK et al (2005) Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake. Circ Res 97:1018–1026

    Article  CAS  PubMed  Google Scholar 

  412. Xie X, Bi HL, Lai S, Zhang YL, Li N et al (2019) The immunoproteasome catalytic β5i subunit regulates cardiac hypertrophy by targeting the autophagy protein ATG5 for degradation. Sci Adv 5:eaau0495

    Article  PubMed  PubMed Central  Google Scholar 

  413. Li J, Wang S, Zhang YL, Bai J, Lin QY et al (2019) Immunoproteasome subunit β5i promotes Ang II (angiotensin II)-induced atrial fibrillation by targeting ATRAP (Ang II type I receptor-associated protein) degradation in mice. Hypertension 73:92–101

    Article  CAS  PubMed  Google Scholar 

  414. Beling A, Kespohl M (2018) Proteasomal protein degradation: adaptation of cellular proteolysis with impact on virus-and cytokine-mediated damage of heart tissue during myocarditis. Front Immunol 9:2620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  415. Wilck N, Ludwig A (2014) Targeting the ubiquitin-proteasome system in atherosclerosis: status quo, challenges, and perspectives. Antioxid Redox Signal 21:2344–2363

    Article  CAS  PubMed  Google Scholar 

  416. Hewing B, Ludwig A, Dan C, Pötzsch M, Hannemann C et al (2017) Immunoproteasome subunit ß5i/LMP7-deficiency in atherosclerosis. Sci Rep 7:13342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  417. Li J, Horak KM, Su H, Sanbe A, Robbins J, Wang X (2011) Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. J Clin Invest 121:3689–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Mulugeta S, Nguyen V, Russo SJ, Muniswamy M, Beers MF (2005) A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol 32:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Somborac-Bacura A, van der Toorn M, Franciosi L, Slebos DJ, Zanic-Grubisic T, Bischoff R, van Oosterhout AJM (2013) Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells. Exp Physiol 98:316–325

    Article  CAS  PubMed  Google Scholar 

  420. Yamada Y, Tomaru U, Ishizu A, Ito T, Kiuchi T et al (2015) Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice. Lab Invest 95:625–634

    Article  CAS  PubMed  Google Scholar 

  421. Sixt SU, Beiderlinden M, Jennissen HP, Peters J (2007) Extracellular proteasome in the human alveolar space: a new housekeeping enzyme? Am J Physiol Lung Cell Mol Physiol 292:L1280–L1288

    Article  CAS  PubMed  Google Scholar 

  422. Sixt SU, Dahlmann B (2008) Extracellular, circulating proteasomes and ubiquitin—incidence and relevance. Biochim Biophys Acta 1782:817–823

    Article  CAS  PubMed  Google Scholar 

  423. Sixt SU, Alami R, Hakenbeck J, Adamzik M, Kloss A et al (2012) Distinct proteasome subpopulations in the alveolar space of patients with the acute respiratory distress syndrome. Mediat Inflamm 2012:204250

    Article  CAS  Google Scholar 

  424. Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L et al (2015) The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl Med 7:318ra200

    Article  PubMed  CAS  Google Scholar 

  425. Shi J, Liu X, Xu C, Ge J, Ren J et al (2015) Up-regulation of PSMB4 is associated with neuronal apoptosis after neuroinflammation induced by lipopolysaccharide. J Mol Histol 46:457–466

    Article  CAS  PubMed  Google Scholar 

  426. Wei W, Zou Y, Jiang Q, Zhou Z, Ding H, Yan L, Yang S (2017) PSMB5 is associated with proliferation and drug resistance in triple-negative breast cancer. Int J Biol Markers 33:102–108

    Article  CAS  Google Scholar 

  427. Zhang X, Lin D, Lin Y, Chen H, Zou M et al (2017) Proteasome beta-4 subunit contributes to the development of melanoma and is regulated by miR-148b. Tumour Biol 39:1010428317705767

    CAS  PubMed  Google Scholar 

  428. Li H, Zhang J, Zhen C, Yang B, Feng L (2018) Gankyrin as a potential target for tumor therapy: evidence and perspectives. Am J Transl Res 10:1949–1960

    CAS  PubMed  PubMed Central  Google Scholar 

  429. de Bettignies G, Coux O (2010) Proteasome inhibitors: dozens of molecules and still counting. Biochimie 92:1530–1545

    Article  PubMed  CAS  Google Scholar 

  430. Beck P, Dubiella C, Groll M (2012) Covalent and non-covalent reversible proteasome inhibition. Biol Chem 393:1101–1120

    Article  CAS  PubMed  Google Scholar 

  431. Thibaudeau TA, Smith DM (2019) A practical review of proteasome pharmacology. Pharmacol Rev 71:170–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19:99–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Screen M, Britton M, Downey SL, Verdoes M, Voges MJ et al (2010) Nature of pharmacophore influences active site specificity of proteasome inhibitors. J Biol Chem 285:40125–40134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Verdoes M, Florea BI, Menendez-Benito V, Maynard CJ, Witte MD et al (2006) A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem Biol 13:1217–1226

    Article  CAS  PubMed  Google Scholar 

  435. Gan J, Leestemaker Y, Sapmaz A, Ovaa H (2019) Highlighting the proteasome: using fluorescence to visualize proteasome activity and distribution. Front Mol Biosci 6:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Teicher BA, Tomaszewski JE (2015) Proteasome inhibitors. Biochem Pharmacol 96:1–9

    Article  CAS  PubMed  Google Scholar 

  437. Park JE, Miller Z, Jun Y, Lee W, Kim KB (2018) Next-generation proteasome inhibitors for cancer therapy. Transl Res 198:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Herndon TM, Deisseroth A, Kaminskas E, Kane RC, Koti KM et al (2013) U.S. Food and Drug Administration approval: carfilzomib for the treatment of multiple myeloma. Clin Cancer Res 19:4559–4563

    Article  CAS  PubMed  Google Scholar 

  439. Kisselev AF, Callard A, Goldberg AL (2006) Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281:8582–8590

    Article  CAS  PubMed  Google Scholar 

  440. Cromm PM, Crews CM (2017) The proteasome in modern drug discovery: second life of a highly valuable drug target. ACS Cent Sci 3:830–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Basler M, Mundt S, Bitzer A, Schmidt C, Groettrup M (2015) The immunoproteasome: a novel drug target for autoimmune diseases. Clin Exp Rheumatol 33:74–79

    Google Scholar 

  442. Kammerl IE, Meiners S (2016) Proteasome function shapes innate and adaptive immune responses. Am J Physiol Lung Cell Mol Physiol 311:L328–L336

    Article  PubMed  Google Scholar 

  443. Eskandari SK, Seelen MAJ, Lin G, Azzi JR (2017) The immunoproteasome: an old player with a novel and emerging role in alloimmunity. Am J Transplant 17:3033–3039

    Article  CAS  PubMed  Google Scholar 

  444. Sula Karreci E, Fan H, Uehara M, Mihali AB, Singh PK et al (2016) Brief treatment with a highly selective immunoproteasome inhibitor promotes long-term cardiac allograft acceptance in mice. Proc Natl Acad Sci USA 113:E8425–E8432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  445. Basler M, Maurits E, de Bruin G, Koerner J, Overkleeft HS, Groettrup M (2018) Amelioration of autoimmunity with an inhibitor selectively targeting all active centres of the immunoproteasome. Br J Pharmacol 175:38–52

    Article  CAS  PubMed  Google Scholar 

  446. Bibo-Verdugo B, Jiang Z, Caffrey CR, O’Donoghue AJ (2017) Targeting proteasomes in infectious organisms to combat disease. FEBS J 284:1503–1517

    Article  CAS  PubMed  Google Scholar 

  447. Lin G, Li D, de Carvalho LPS, Deng H, Tao H et al (2009) Inhibitors selective for mycobacterial versus human proteasomes. Nature 461:624–626

    Article  CAS  Google Scholar 

  448. Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J et al (2013) N,C-Capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J Am Chem Soc 135:9968–9971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Totaro KA, Barthelme D, Simpson PT, Jiang X, Lin G et al (2017) Rational design of selective and bioactive inhibitors of the Mycobacterium tuberculosis proteasome. ACS Infect Dis 3:176–181

    Article  CAS  PubMed  Google Scholar 

  450. Li H, O’Donoghue AJ, van der Linden WA, Xie SC, Yoo E et al (2016) Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 530:233–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Kirkman LA, Zhan W, Visone J, Dziedziech A, Singh PK et al (2018) Antimalarial proteasome inhibitor reveals collateral sensitivity from intersubunit interactions and fitness cost of resistance. Proc Natl Acad Sci USA 115:E6863–E6870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. Khare S, Nagle AS, Biggart A, Lai YH, Liang F et al (2016) Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537:229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  453. Robak P, Robak T (2019) Bortezomib for the treatment of hematologic malignancies: 15 years later. Drugs RD 19:73–92

    Article  CAS  Google Scholar 

  454. Kaplan GS, Torcun CC, Grune T, Ozer NK, Karademir B (2017) Proteasome inhibitors in cancer therapy: treatment regimen and peripheral neuropathy as a side effect. Free Radic Biol Med 103:1–13

    Article  CAS  PubMed  Google Scholar 

  455. Mohan M, Matin A, Davies FE (2017) Update on the optimal use of bortezomib in the treatment of multiple myeloma. Cancer Manag Res 9:51–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  456. Cole DC, Frishman WH (2018) Cardiovascular complications of proteasome inhibitors used in multiple myeloma. Cardiol Rev 26:122–129

    Article  PubMed  Google Scholar 

  457. Wallington-Beddoe CT, Sobieraj-Teague M, Kuss BJ, Pitson SM (2018) Resistance to proteasome inhibitors and other targeted therapies in myeloma. Br J Haematol 182:11–28

    Article  CAS  PubMed  Google Scholar 

  458. Robak P, Drozdz I, Szemraj J, Robak T (2018) Drug resistance in multiple myeloma. Cancer Treat Rev 70:199–208

    Article  CAS  PubMed  Google Scholar 

  459. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I et al (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112:2489–2499

    Article  CAS  PubMed  Google Scholar 

  460. Li B, Fu J, Chen P, Ge X, Li Y et al (2015) The nuclear factor (erythroid-derived 2)-like 2 and proteasome maturation protein axis mediates bortezomib resistance in multiple myeloma. J Biol Chem 290:29854–29868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  461. Njomen E, Osmulski PA, Jones CL, Gaczynska M, Tepe JJ (2018) Small molecule modulation of proteasome assembly. Biochemistry 57:4214–4224

    Article  CAS  PubMed  Google Scholar 

  462. Trader DJ, Simanski S, Dickson P, Kodadek T (2017) Establishment of a suite of assays that support the discovery of proteasome stimulators. Biochim Biophys Acta Gen Subj 1861:892–899

    Article  CAS  PubMed  Google Scholar 

  463. Jones CL, Njomen E, Sjögren B, Dexheimer TS, Tepe JJ (2017) Small molecule enhancement of 20S proteasome activity targets intrinsically disordered proteins. ACS Chem Biol 12:2240–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Coleman R, Trader DJ (2018) Development and application of a sensitive peptide reporter to discover 20S proteasome stimulators. ACS Comb Sci 20:269–276

    Article  CAS  PubMed  Google Scholar 

  465. Leestemaker Y, de Jong A, Witting KF, Penning R, Schuurman K et al (2017) Proteasome activation by small molecules. Cell Chem Biol 24:725–736.e7

    Article  CAS  PubMed  Google Scholar 

  466. Wedel S, Manola M, Cavinato M, Trougakos IP, Jansen-Dürr P (2018) Targeting protein quality control mechanisms by natural products to promote healthy ageing. Molecules 23:E1219

    Article  PubMed  CAS  Google Scholar 

  467. Athanasopoulou S, Chondrogianni N, Santoro A, Asimaki K, Delitsikou V et al (2018) Beneficial effects of elderly tailored Mediterranean diet on the proteasomal proteolysis. Front Physiol 9:457

    Article  PubMed  PubMed Central  Google Scholar 

  468. Inobe T, Genmei R (2015) Inhibition of the 26S proteasome by peptide mimics of the coiled-coil region of its ATPase subunits. Biochem Biophys Res Commun 468:143–150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Elke Krüger (Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany) for her critical reading of the manuscript and helpful comments. They also acknowledge the support of the COST program, Action Proteostasis BM1307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Coux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coux, O., Zieba, B.A., Meiners, S. (2020). The Proteasome System in Health and Disease. In: Barrio, R., Sutherland, J., Rodriguez, M. (eds) Proteostasis and Disease . Advances in Experimental Medicine and Biology, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-38266-7_3

Download citation

Publish with us

Policies and ethics