Skip to main content

The Once and Present Standard Model of Elementary Particle Physics

  • Chapter
  • First Online:
Discovery Beyond the Standard Model of Elementary Particle Physics

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

There are many theories that have resided these last fifty years within the hazy mist we have been calling the Standard Model (SM) of elementary particles. An attempt is made here to construct a coherent description of the SM today, because only precisely articulated theories can be targeted for annihilation, corroboration, and alteration. To this end it is useful to categorize the facts, mysteries and myths that together build a single conception of the SM. For example, it is argued that constructing a myth for how neutrinos obtain mass is useful for progress. We also advocate for interpreting the cosmological constant, dark matter, baryogenesis, and inflation as four “mysteries of the cosmos” that are indeterminate regarding new particles or interactions, despite a multitude of available particle explanations. Some history of the ever-changing SM is also presented to remind us that today’s SM is not our parents’ SM, nor will it likely be our children’s SM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, “In the Standard Model (SM) of elementary particle physics, neutrinos are massless particles” [65]. And, “Some considered [the Higgs boson] as the last brick in the construction of the Standard Model. It is not, since in the Standard Model neutrinos have no mass...” [61]. And, “The standard model of particle physics says neutrinos should be massless, but experiments have shown that they have a small but nonzero mass—the subject of the 2015 Nobel Prize in Physics” [34]. There are many more such quotes throughout the literature and presented in talks.

  2. 2.

    It is generally held that any particle physics theory based on standard quantum field theory will break down in extreme gravity environments, which is one of the motivations for pursuing deeper string theory descriptions for that domain. It is also why we restrict our discussion to energies well below the Planck scale.

  3. 3.

    See, for example, Sect. IV of [46] for a review of possibilities.

  4. 4.

    Analogously, one recalls that the SM of much of the western world in 325 A.D., as expressed by the Council of Nicaea, held that “God [is] maker of all things both seen and unseen” [59]. SM-325 remains compatible with all the data, but as a theory it has been continually augmented over the years by articulated, computable, and proximate explanatory theories for the mysteries of natural phenomena.

  5. 5.

    See, for example, Fig. 8 of [7].

References

  1. Abazajian, K.N., et al. [CMB-S4 Collaboration]: CMB-S4 Science Book, 1st ed. arXiv:1610.02743 [astro-ph.CO]

  2. Abi, B., et al. [DUNE Collaboration]: The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies. arXiv:1807.10334 [physics.ins-det]

  3. Abbott, L.F., Sikivie, P.: A cosmological bound on the invisible axion. Phys. Lett. B 120, 133 (1983) [Phys. Lett. 120B, 133 (1983)]. https://doi.org/10.1016/0370-2693(83)90638-X

    Article  ADS  Google Scholar 

  4. Ackermann, M., et al. [Fermi-LAT Collaboration]: Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of fermi large area telescope data. Phys. Rev. Lett. 115(23), 231301 (2015). https://doi.org/10.1103/PhysRevLett.115.231301, arXiv:1503.02641 [astro-ph.HE]

  5. Agostini, M., Benato, G., Detwiler, J.: Discovery probability of next-generation neutrinoless double-beta decay experiments. Phys. Rev. D 96(5), 053001 (2017). https://doi.org/10.1103/PhysRevD.96.053001, arXiv:1705.02996 [hep-ex]

  6. Akerib, D.S., et al. [LUX Collaboration]: Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118(2), 021303 (2017). https://doi.org/10.1103/PhysRevLett.118.021303, arXiv:1608.07648 [astro-ph.CO]

  7. Akrami, Y., et al. [Planck Collaboration]: Planck 2018 results. X. Constraints on inflation. arXiv:1807.06211 [astro-ph.CO]

  8. Altarelli, G., Feruglio, F.: Discrete flavor symmetries and models of neutrino mixing. Rev. Mod. Phys. 82, 2701 (2010). https://doi.org/10.1103/RevModPhys.82.2701, arXiv:1002.0211 [hep-ph]

    Article  ADS  Google Scholar 

  9. Aprile, E., et al. [XENON Collaboration]: First dark matter search results from the XENON1T experiment. Phys. Rev. Lett. 119(18), 181301 (2017). https://doi.org/10.1103/PhysRevLett.119.181301, arXiv:1705.06655 [astro-ph.CO]

  10. Ballesteros, G., Redondo, J., Ringwald, A., Tamarit, C.: Standard model-axion-seesaw-Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke. JCAP 1708(08), 001 (2017). https://doi.org/10.1088/1475-7516/2017/08/001, arXiv:1610.01639 [hep-ph]

    Article  Google Scholar 

  11. Ballesteros, G., Taoso, M.: Primordial black hole dark matter from single field inflation. Phys. Rev. D 97(2), 023501 (2018). https://doi.org/10.1103/PhysRevD.97.023501, arXiv:1709.05565 [hep-ph]

  12. Banks, T., Seiberg, N.: Symmetries and strings in field theory and gravity. Phys. Rev. D 83, 084019 (2011). https://doi.org/10.1103/PhysRevD.83.084019, arXiv:1011.5120 [hep-th]

  13. Bezrukov, F.L., Shaposhnikov, M.: The standard model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2008). https://doi.org/10.1016/j.physletb.2007.11.072, arXiv:0710.3755 [hep-th]

    Article  ADS  Google Scholar 

  14. Bilenky, S.M., Petcov, S.T., Pontecorvo, B.: Lepton mixing, mu –> e + gamma decay and neutrino oscillations. Phys. Lett. 67B, 309 (1977). https://doi.org/10.1016/0370-2693(77)90379-3

    Article  ADS  Google Scholar 

  15. Bjorken, J.D.: The November Revolution: a theorist reminisces. In: Presented at the SLAC Symposium on the Tenth Anniversary of the November Revolution, Stanford, California, 14 November 1984 (Fermilab-Conf-85/58)

    Google Scholar 

  16. Caldwell, A., Merle, A., Schulz, O., Totzauer, M.: Global Bayesian analysis of neutrino mass data. Phys. Rev. D 96(7), 073001 (2017). https://doi.org/10.1103/PhysRevD.96.073001, arXiv:1705.01945 [hep-ph]

  17. Carr, B.: Primordial black holes as dark matter and generators of cosmic structure. arXiv:1901.07803 [astro-ph.CO]

  18. Chen, S.L., Frigerio, M., Ma, E.: Large neutrino mixing and normal mass hierarchy: a discrete understanding. Phys. Rev. D 70, 073008 (2004). Erratum: [Phys. Rev. D 70, 079905 (2004)]. https://doi.org/10.1103/PhysRevD.70.079905, https://doi.org/10.1103/PhysRevD.70.073008 [hep-ph/0404084]

  19. Cheng, T.P., Li, L.F.: Gauge Theory of Elementary Particle Physics. Clarendon, Oxford, UK (1984)

    Google Scholar 

  20. Close, F.: A November revolution: the birth of a new particle. CERN Cour. 44(10), 25 (2004)

    Google Scholar 

  21. Davis, R.: A review of the Homestake solar neutrino experiment. Prog. Part. Nucl. Phys. 32, 13 (1994). https://doi.org/10.1016/0146-6410(94)90004-3

    Article  ADS  Google Scholar 

  22. Davis, R.: Raymond Davis Jr. biographical. Autobiographical sketch for Nobel prize of 2002. https://www.nobelprize.org/prizes/physics/2002/davis/biographical/. Accessed 8 July 2019

  23. Davoudiasl, H., Kitano, R., Li, T., Murayama, H.: The new minimal standard model. Phys. Lett. B 609, 117 (2005). https://doi.org/10.1016/j.physletb.2005.01.026 [hep-ph/0405097]

    Article  ADS  Google Scholar 

  24. Dell’Oro, S., Marcocci, S., Viel, M., Vissani, F.: Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 2162659 (2016). https://doi.org/10.1155/2016/2162659, arXiv:1601.07512 [hep-ph]

    Article  Google Scholar 

  25. Drees, M., Xu, Y.: Critical Higgs inflation and second order gravitational wave signatures. arXiv:1905.13581 [hep-ph]

  26. Ezquiaga, J.M., Garcia-Bellido, J., Ruiz Morales, E.: Primordial black hole production in critical Higgs inflation. Phys. Lett. B 776, 345 (2018). https://doi.org/10.1016/j.physletb.2017.11.039, arXiv:1705.04861 [astro-ph.CO]

    Article  ADS  Google Scholar 

  27. Fogli, G.L., Lisi, E., Mirizzi, A., Montanino, D.: Probing supernova shock waves and neutrino flavor transitions in next-generation water-Cerenkov detectors. JCAP 0504, 002 (2005). https://doi.org/10.1088/1475-7516/2005/04/002 [hep-ph/0412046]

    Article  Google Scholar 

  28. Fukuda, Y., et al. [Super-Kamiokande Collaboration]: Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562 (1998). https://doi.org/10.1103/PhysRevLett.81.1562 [hep-ex/9807003]

    Article  ADS  Google Scholar 

  29. Gariazzo, S., Archidiacono, M., de Salas, P.F., Mena, O., Ternes, C.A., Trtola, M.: Neutrino masses and their ordering: global data, priors and models. JCAP 1803(03), 011 (2018). https://doi.org/10.1088/1475-7516/2018/03/011, arXiv:1801.04946 [hep-ph]

    Article  Google Scholar 

  30. Gell-Mann, M., Ramond, P., Slansky, R.: Complex spinors and unified theories. Conf. Proc. C 790927, 315 (1979). [arXiv:1306.4669 [hep-th]]

    Google Scholar 

  31. Glashow, S.L.: Partial symmetries of weak interactions. Nucl. Phys. 22, 579 (1961). https://doi.org/10.1016/0029-5582(61)90469-2

    Article  Google Scholar 

  32. Harlow, D., Ooguri, H.: Symmetries in quantum field theory and quantum gravity. arXiv:1810.05338 [hep-th]

  33. Heavens, A.F., Sellentin, E.: Objective Bayesian analysis of neutrino masses and hierarchy. JCAP 1804(04), 047 (2018). https://doi.org/10.1088/1475-7516/2018/04/047, arXiv:1802.09450 [astro-ph.CO]

    Article  Google Scholar 

  34. Hill, H.: Lower limit on the half-life of neutrinoless double-beta decay. Phys. Today 15, (2019). https://doi.org/10.1063/PT.6.1.20191015a

  35. Hook, A.: TASI lectures on the strong CP problem and axions. arXiv:1812.02669 [hep-ph]

  36. Jungman, G., Kamionkowski, M., Griest, K.: Supersymmetric dark matter. Phys. Rept. 267, 195 (1996). https://doi.org/10.1016/0370-1573(95)00058-5 [hep-ph/9506380]

    Article  ADS  Google Scholar 

  37. Kobayashi, M., Maskawa, T.: CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652 (1973). https://doi.org/10.1143/PTP.49.652

    Article  ADS  Google Scholar 

  38. Laudan, L., Leplin, J.: Empirical equivalence and underdetermination. J. Philos. 88, 449 (1991)

    Article  MathSciNet  Google Scholar 

  39. Lee, B.W., Pakvasa, S., Shrock, R.E., Sugawara, H.: Muon and electron number nonconservation in a V-A gauge model. Phys. Rev. Lett. 38, 937 (1977). Erratum: [Phys. Rev. Lett. 38, 1230 (1977)]. https://doi.org/10.1103/PhysRevLett.38.937, https://doi.org/10.1103/PhysRevLett.38.1230

  40. Lei, M., Steinberg, N., Wells, J.D.: Probing non-standard neutrino interactions with supernova neutrinos at hyper-K. arXiv:1907.01059 [hep-ph]

  41. Long, A.J., Raveri, M., Hu, W., Dodelson, S.: Neutrino mass priors for cosmology from random matrices. Phys. Rev. D 97(4), 043510 (2018). https://doi.org/10.1103/PhysRevD.97.043510, arXiv:1711.08434 [astro-ph.CO]

  42. Marciano, W.J., Sanda, A.I.: Exotic decays of the muon and heavy leptons in gauge theories. Phys. Lett. 67B, 303 (1977). https://doi.org/10.1016/0370-2693(77)90377-X

    Article  ADS  Google Scholar 

  43. Minkowski, P.: \(\mu \rightarrow e\gamma \) at a rate of one out of \(10^{9}\) muon decays? Phys. Lett. 67B, 421 (1977). https://doi.org/10.1016/0370-2693(77)90435-X

    Article  ADS  Google Scholar 

  44. Mohapatra, R.N., Senjanovic, G.: Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett. 44, 912 (1980). https://doi.org/10.1103/PhysRevLett.44.912

    Article  ADS  Google Scholar 

  45. Motohashi, H., Hu, W.: Primordial black holes and slow-roll violation. Phys. Rev. D 96(6), 063503 (2017). https://doi.org/10.1103/PhysRevD.96.063503, arXiv:1706.06784 [astro-ph.CO]

  46. Orlofsky, N., Pierce, A., Wells, J.D.: Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves. Phys. Rev. D 95(6), 063518 (2017). https://doi.org/10.1103/PhysRevD.95.063518, arXiv:1612.05279 [astro-ph.CO]

  47. Particle Data Group (Hikasa, K., et al.): Review of particle properties. Phys. Rev. D45, S1 (1992)

    Google Scholar 

  48. Particle Data Group (Montanet, L., et al.): Review of particle properties. Phys. Rev. D50, 1173 (1994)

    Google Scholar 

  49. Peccei, R.D., Quinn, H.R.: CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440 (1977). https://doi.org/10.1103/PhysRevLett.38.1440

    Article  ADS  Google Scholar 

  50. Pinch, T.: Confronting Nature: The Sociology of Solar-Neutrino Detection. D. Reidel, Boston (1986)

    Book  Google Scholar 

  51. Preskill, J., Wise, M.B., Wilczek, F.: Cosmology of the invisible axion. Phys. Lett. B 120, 127 (1983) [Phys. Lett. 120B, 127 (1983)]. https://doi.org/10.1016/0370-2693(83)90637-8

    Article  ADS  Google Scholar 

  52. Rubio, J.: Higgs inflation. Front. Astron. Space Sci. 5, 50 (2019). https://doi.org/10.3389/fspas.2018.00050, arXiv:1807.02376 [hep-ph]

  53. Salam, A.: Weak and electromagnetic interactions. Conf. Proc. C 680519, 367 (1968)

    Google Scholar 

  54. Schechter, J., Valle, J.W.F.: Neutrino masses in \(SU(2)\times U(1)\) theories. Phys. Rev. D 22, 2227 (1980). https://doi.org/10.1103/PhysRevD.22.2227

    Article  ADS  Google Scholar 

  55. Schirber, M.: WIMP alternatives come out of the shadows. APS Phys. https://physics.aps.org/articles/v11/48. Accessed 8 July 2019

  56. Schwetz, T., Freese, K., Gerbino, M., Giusarma, E., Hannestad, S., Lattanzi, M., Mena, O., Vagnozzi, S.: Comment on “Strong evidence for the normal neutrino hierarchy”. arXiv:1703.04585 [astro-ph.CO]

  57. Shaposhnikov, M.: The Higgs boson and cosmology. Philos. Trans. R. Soc. Lond. A 373(2032), 20140038 (2015). https://doi.org/10.1098/rsta.2014.0038

    Article  ADS  Google Scholar 

  58. Simpson, F., Jimenez, R., Pena-Garay, C., Verde, L.: Strong Bayesian evidence for the normal neutrino hierarchy. JCAP 1706(06), 029 (2017). https://doi.org/10.1088/1475-7516/2017/06/029, arXiv:1703.03425 [astro-ph.CO]

    Article  Google Scholar 

  59. Tanner, N.P.: Decrees of the Ecumenical Councils, 2 vols. Georgetown University Press (1990)

    Google Scholar 

  60. Trimble, V., Reines, F.: The solar neutrino problem—a progress(?) report. Rev. Mod. Phys. 45, 1 (1973). https://doi.org/10.1103/RevModPhys.45.1

    Article  ADS  Google Scholar 

  61. Valle, J.W.F.: Neutrino physics from A to Z: two lectures at Corfu. PoS CORFU 2016, 007 (2017). https://doi.org/10.22323/1.292.0007, arXiv:1705.00872 [hep-ph]

  62. Weinberg, S.: A model of leptons. Phys. Rev. Lett. 19, 1264 (1967). https://doi.org/10.1103/PhysRevLett.19.1264

    Article  ADS  Google Scholar 

  63. Wells, J.D.: Beyond the hypothesis: theory’s role in the genesis, opposition, and pursuit of the Higgs boson. Stud. Hist. Philos. Sci. B 62, 36 (2018). https://doi.org/10.1016/j.shpsb.2017.05.004

    Article  MATH  Google Scholar 

  64. Wells, J.D.: Discovery goals and opportunities in high energy physics: a defense of BSM-oriented exploration over signalism. arXiv:1904.02769 [physics.hist-ph]

  65. Winter, W.: Lectures on neutrino phenomenology. Nucl. Phys. Proc. Suppl. 203–204, 45 (2010). https://doi.org/10.1016/j.nuclphysbps.2010.08.005, arXiv:1004.4160 [hep-ph]

    Article  ADS  Google Scholar 

  66. Yanagida, T.: Horizontal gauge symmetry and masses of neutrinos. Conf. Proc. C 7902131, 95 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Wells .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wells, J.D. (2020). The Once and Present Standard Model of Elementary Particle Physics. In: Discovery Beyond the Standard Model of Elementary Particle Physics. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-38204-9_2

Download citation

Publish with us

Policies and ethics