Skip to main content

Epiphytism in Seaweed Farming: Causes, Status, and Implications

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 44))

Abstract

An epiphyte is a nonparasitic plant that dwells on another plant and has been well studied in terrestrial plants. However, in the marine ecosystem, these epiphytes thrive on algal thallus for their support and growth, and their infestation has a prime economic impediment in commercial cultivation. They usually belong to various groups, namely, bacteria, fungi, algae, ascidians, bryozoans, sponges, protozoa, molluscs, crustaceans, and other marine sessile organisms. The seaweed farming industry is currently growing at ca. 9% per annum, with global production of 31.2 million wet tons worth US$ 11.7 billion. The first report of an epiphytic outbreak in commercial farms of Kappaphycus in the 1970s caught the attention of several researchers on this devastating epiphyte which causes retarded growth and significant loss of stocking biomass, ultimately leading to the production of inferior quality of raw material. High-density planting in commercial farms is often responsible for recurring epiphytic infestations. Nevertheless, it is almost certain that the entire crop collapses due to epiphyte outbreak in a short span of time. Therefore, the lack of reliable global statistics exerts trade deficit in commercial seaweed farming. This chapter highlights the causes of epiphytic infestations, the current status of outbreaks, methods to control epiphytes, and its economic implications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anandavelu I et al (2013) Epifaunal assemblage on morphologically distinct intertidal seaweeds of Kodiyaghat (South Andaman), India. Proc Int Acad Ecol Environ Sci 3(3):229–237

    Google Scholar 

  • Anderson LM, Martone PT (2014) Biomechanical consequences of epiphytism in intertidal macroalgae. J Exp Biol:1167–1174. https://doi.org/10.1242/jeb.088955

  • Arrontes J (1990) Composition, distribution on host and seasonality of epiphytes on three intertidal algae. Bot Mar 33(2):205–212. https://doi.org/10.1515/botm

    Article  Google Scholar 

  • Berland BR, Bonin DJ, Maestrini SY (1972) Are some bacteria toxic for marine algae? Mar Biol. Springer 12(3):189–193

    Article  Google Scholar 

  • Bertness M, Leonard G (1997) The role of positive interactions in communities : lessons from intertidal habitats. Ecology 78(7):1976–1989

    Article  Google Scholar 

  • Bertness M et al (1999) Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80(8):2711–2726

    Article  Google Scholar 

  • Borlongan IAG, Tibubos KR, Yunque DAT, Hurtado AQ, Critchley AT (2011) Impact of AMPEP on the growth and occurrence of epiphytic Neosiphonia infestation on two varieties of commercially cultivated Kappaphycus alvarezii grown at different depths in the Philippines. J Appl Phycol 23:615–621. https://doi.org/10.1007/s10811-010-9649-9

  • Burke C et al (2011) Bacterial community assembly based on functional genes rather than species. Proc Nat Acad Sci U S A 108(34):14288–14293. https://doi.org/10.1073/pnas.1101591108

    Article  Google Scholar 

  • Cacabelos E et al (2010) Do grazers prefer invasive seaweeds? J Exp Mar Biol Ecol 393(1–2):182–187. https://doi.org/10.1016/j.jembe.2010.07.024.

    Article  Google Scholar 

  • Chemello R, Milazzo M (2002) Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Mar Biol 140:981–990. https://doi.org/10.1007/s00227-002-0777-x

    Article  Google Scholar 

  • Cock JM et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, Nature Publishing Group 465(7298):617–621

    CAS  Google Scholar 

  • Davis A et al (1989) Epibiosis of marine algae and benthic invertebrates: natural product chemistry and other mechanisms inhibiting settlement and overgrowth. In: Bioorganic marine chemistry. Springer, Berlin, pp 85–114

    Chapter  Google Scholar 

  • Doty MS (1980) Outplanting Eucheuma species and Gracilaria species in the tropics. In: Abbott IA, Foster MS, Eklund LF (eds) Pacific seaweed aquaculture, Proc. Symp. Useful algae. California Sea Grant College Program, Inst. Mar. Resources, Univ Calif, La Jolla, pp 19–22

    Google Scholar 

  • Duffy JE, Hay ME (1990) Seaweed adaptations to herbivory. Bioscience 40(5):368–375

    Article  Google Scholar 

  • Duffy JE, Hay ME (1994) Herbivore resistance to seaweed chemical defense: the roles of mobility and predation risk. Ecology 75(5):1304–1319

    Article  Google Scholar 

  • Egan S et al (2013) The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol Rev. The Oxford University Press 37(3):462–476

    Article  CAS  Google Scholar 

  • Englebert ET, McDermott C, Kleinheinz GT (2008) Effects of the nuisance algae, Cladophora, on Escherichia coli at recreational beaches in Wisconsin. Sci Total Environ 404:10–17. https://doi.org/10.1016/j.scitotenv.2008.05.025

    Article  CAS  PubMed  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018 – meeting the sustainable development goals. Rome

    Google Scholar 

  • Fletcher RL (1995) Epiphytism and fouling in Gracilaria cultivation: an overview. J Appl Phycol 7(3):325–333

    Article  Google Scholar 

  • Friedlander M (1991) Growth rate, epiphyte biomass and agar yield of Gracilaria conferta in an annual outdoor experiment. I. Irradiance and nitrogen. Bioresour Technol 38:203–208

    Article  Google Scholar 

  • Friedlander M (1992) Gracilaria conferta and its epiphytes. The effect of culture conditions on growth. Bot Mar 35:423–428

    Article  Google Scholar 

  • Friedlander M, Krom MD, Ben-Amotz A (1991) The effect of light and ammonium on growth, epiphytes and chemical constituents of Gracilaria conferta in outdoor cultures. Bot Mar 34:161–166. https://doi.org/10.1515/botm.1991.34.3.161

  • Gachon CMM et al (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15(11):633–640. https://doi.org/10.1016/j.tplants.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  • Ganesan M, Sahu N, Eswaran K (2011) Raft culture of Gracilaria edulis in open sea along the south-eastern coast of India. Aquaculture. Elsevier B.V 321(1–2):145–151. https://doi.org/10.1016/j.aquaculture.2011.08.040

    Article  Google Scholar 

  • Ganesan M et al (2014) Epiphytism differences in Gelidiella acerosa cultivated with floating rafts and concrete blocks. J Appl Phycol 27:399–412. https://doi.org/10.1007/s10811-014-0279-5

    Article  Google Scholar 

  • Goecke F et al (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–299. https://doi.org/10.3354/meps08607

    Article  CAS  Google Scholar 

  • Goecke F et al (2013) Algae as an important environment for bacteria-phylogenetic relationships among new bacterial species isolated from algae. Phycologia 52(1):14–24

    Article  CAS  Google Scholar 

  • Haglund K, Pedersén M (1992) Growth of the red alga Gracilaria tenuistipitata at high pH: influence of some environmental factors and correlation to an increased carbonic-anhydrase activity. Bot Mar 35:579–587

    Article  CAS  Google Scholar 

  • Hay ME, Parker JD, Burkepile DE, Caudill CC, Wilson AE, Hallinan ZP, Chequer AD (2004) Mutualisms and aquatic community structure: the enemy of my enemy is my friend. Annu Rev Ecol Evol Syst 35:175–197

    Article  Google Scholar 

  • Hurtado AQ, Montaño MNE, Martinez-Goss MR (2013) Commercial production of carrageenophytes in the Philippines: ensuring long-term sustainability for the industry. J Appl Phycol 25(3):733–742

    Article  CAS  Google Scholar 

  • Ingle KN et al (2018) Marine integrated pest management (MIPM) approach for sustainable seagriculture. Algal Res 29(November 2017):223–232. https://doi.org/10.1016/j.algal.2017.11.010

    Article  Google Scholar 

  • James PSBR, Krishnamurthy Chennubhotla VS, Rodrigo JX (1986) Studies on the fauna associated with the cultured seaweed Gracilaria edulis. The symposium of coastal aquaculture:1193–1198

    Google Scholar 

  • Joint I, Tait K, Wheeler G (2007) Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos Trans R Soc London B Biol Sci 362(1483):1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones E, Thornber CS (2010) Effects of habitat-modifying invasive macroalgae on epiphytic algal communities. Mar Ecol Progress Ser 400(Rodriguez 2006):87–100. https://doi.org/10.3354/meps08391

    Article  Google Scholar 

  • Joseph MM (1978) Ecological studies on the fauna associated with economic seaweeds of South India-I. Species composition, feeding habits and interrelationships. Seaweed Res Util 3:2–24

    Google Scholar 

  • Kersen P et al (2007) Epiphytes and associated fauna on the brown alga Fucus vesiculosus in the Baltic and the north seas in relation to different abiotic and biotic variables. Mar Ecol 32:87–95. https://doi.org/10.1111/j.1439-0485.2010.00418.x.

    Article  Google Scholar 

  • Kitayama T, Garrigue C (1998) Marine algal endophyte and epiphytes new to New Caledonia. Bull Nat Sci Mus Tokyo Ser B 24(3):93–101

    Google Scholar 

  • Lancellotti DA et al (1993) Distribution patterns and coexistence of six species of the amphipod genus Hyale. Mar Ecol Prog Ser 93(Lancellotti 1990):131–141

    Article  Google Scholar 

  • Lemos ML, Toranzo AE, Barja JL (1985) Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb Ecol 11(2):149–163. https://doi.org/10.1007/BF02010487

    Article  CAS  PubMed  Google Scholar 

  • Leonardi PI et al (2006) Diversity, phenomenology and epidemiology of epiphytism in farmed Gracilaria chilensis (Rhodophyta) in northern Chile. Eur J Phycol 41(2):247–257. https://doi.org/10.1080/09670260600645659

    Article  Google Scholar 

  • Lim E et al (2016) Global transcriptome analysis of Gracilaria changii (Rhodophyta) in response to agarolytic enzyme and bacterium. Mar Biotechnol Biotechnol 18:189–200. https://doi.org/10.1007/s10126-015-9680-6

    Article  CAS  Google Scholar 

  • Linskens HF (1963) Beitrag zur frage der beziehungen zwischen epiphyt und basiphyt bei marinen algen. Pubbl Stn Zool Napoli 33:274–293

    Google Scholar 

  • Lobban CS, Harrison PJ (2000) Seaweed ecology and physiology. Cambridge University Press, Cambridge, 366 pp

    Google Scholar 

  • Longtin CM et al (2009) Distribution of algal epiphytes across environmental gradients at different scales: intertidal elevation, host canopies, and host fronds. J Phycol 45:820–827. https://doi.org/10.1111/j.1529-8817.2009.00710.x.

    Article  PubMed  Google Scholar 

  • Loque CP et al (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33(5):641–648. https://doi.org/10.1007/s00300-009-0740-0

    Article  Google Scholar 

  • Loureiro RR, Reis RP, Berrogain FD, Critchley AT (2012) Extract powder from the brown alga Ascophyllum nodosum (Linnaeus) Le Jolis (AMPEP): a “vaccinelike” effect on Kappaphycus alvarezii (Doty) Doty ex PC Silva. J Appl Phycol 24(3):427–432

    Article  Google Scholar 

  • Molina-montenegro MA et al (2005) Positive associations between macroalgal species in a rocky intertidal zone and their effects on the physiological performance of Ulva lactuca. Mar Ecol Prog Ser 292:173–180

    Article  Google Scholar 

  • Muñoz J, Fotedar R (2010) Epiphytism of Gracilaria cliftonii (Withell, Millar & Kraft) from Western Australia. J Appl Phycol 22:371–379. https://doi.org/10.1007/s10811-009-9469-y

    Article  Google Scholar 

  • Norderhaug KM, Christie H, Rinde E (2002) Colonisation of kelp imitations by epiphyte and holdfast fauna; a study of mobility patterns. Mar Biol 141:965–973. https://doi.org/10.1007/s00227-002-0893-7

    Article  Google Scholar 

  • Norton TA, Benson MR (1983) Ecological interactions between the brown seaweed Sargassum muticum and its associated fauna. Mar Biol 75:169–177

    Article  Google Scholar 

  • Orav-kotta H, Kotta J (2004) Food and habitat choice of the isopod Idotea baltica in the northeastern Baltic Sea. Hydrobiologia 514:79–85

    Article  Google Scholar 

  • Paul VJ, Fenical W (1986) Chemical defense in tropical green algae, order Caulerpales. Mar Ecol Prog Ser 34:157–169

    Article  CAS  Google Scholar 

  • Peteiro C, Freire O (2013) Epiphytism on blades of the edible kelps Undaria pinnatifida and Saccharina latissima farmed under different abiotic conditions. J Would Aquacult Soc 44(5):706–715

    Article  Google Scholar 

  • Pickering TD, Gordon ME, Tong LJ (1993) Effect of nutrient pulse concentration and frequency on growth of Gracilaria chilensis plants and levels of epiphytic algae. J Appl Phycol 5:525–533. https://doi.org/10.1007/BF02182511

  • Poore AGB et al (2012) Global patterns in the impact of marine herbivores on benthic primary producers. Ecol Lett 15:912–922. https://doi.org/10.1111/j.1461-0248.2012.01804.x

    Article  PubMed  Google Scholar 

  • Rindi F, Guiry MD (2004) A long-term comparison of the benthic algal flora of Clare Island, County Mayo, western Ireland. Biodivers Conserv 13:471–492

    Article  Google Scholar 

  • Sand-Jensen K, Borum J (1984) Epiphyte shading and its effect on photosynthesis and diel metabolism of Lobelia dortmanna l. during the spring bloom in a Danish lake. Aquat Biol 20:109–119

    Article  CAS  Google Scholar 

  • Santelices B, Ugarte R (1990) Ecological differences among Chilean populations of commercial Gracilaria. J Appl Phycol 2:17–26

    Article  Google Scholar 

  • Sarma LN, Ganapati PN (1972) Faunal association of algae in the intertidal region of Visakhapatnam. Proc Indian Natl Sci Acad Part B Biol Sci 38:380–396

    Google Scholar 

  • Singh RPR et al (2011) Isolation of seaweed-associated bacteria and their morphogenesis-inducing capability in axenic cultures of the green alga Ulva fasciata. Aquat Biol 12(1):13–21. https://doi.org/10.3354/ab00312

    Article  Google Scholar 

  • Shacklock PF, Doyle RW (1983) Control of epiphytes in seaweed cultures using grazers. Aquaculture 31:141–151

    Article  Google Scholar 

  • Shang VC (1976) Economic aspects of Gracilaria culture in Taiwan. Aquaculture 8:1–7

    Article  Google Scholar 

  • Steel JB, Wilson JB (2003) Which is the phytes in epiphytes. Folia Geobot 38:97–99

    Article  Google Scholar 

  • Taylor RB, Cole RG (1994) Mobile epifauna on subtidal brown seaweeds in northeastern New Zealand. Mar Ecol Prog Ser 115:271–282

    Article  Google Scholar 

  • Totti C, Poulin ÆM, Romagnoli ÆT (2009) Epiphytic diatom communities on intertidal seaweeds from Iceland. Polar Biol 32:1681–1691. https://doi.org/10.1007/s00300-009-0668-4

    Article  Google Scholar 

  • Tujula NA et al (2010) Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J 4:301–311. https://doi.org/10.1038/ismej.2009.107

    Article  PubMed  Google Scholar 

  • Ugarte R, Santelices B (1992) Experimental tank cultivation of Gracilaria in Central Chile. Aquaculture 101:7–16

    Article  Google Scholar 

  • Vairappan CS (2006) Seasonal occurrences of epiphytic algae on the commercially cultivated red alga Kappaphycus alvarezii (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 18:611–617. https://doi.org/10.1007/s10811-006-9062-6

    Article  Google Scholar 

  • Veeragurunathan V et al (2015) Feasibility of Gracilaria dura cultivation in the open sea on the Southeastern coast of India. Aquaculture. Elsevier B.V 438:68–74. https://doi.org/10.1016/j.aquaculture.2015.01.009

    Article  Google Scholar 

  • Viejo RM (1999) Mobile epifauna inhabiting the invasive Sargassum muticum and two local seaweeds in northern Spain. Aquat Bot 64:131–149

    Article  Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Progr Ser Int Res 58:175–189

    Article  Google Scholar 

  • Wahl M, Mark O (1999) The predominantly facultative nature of epibiosis : experimental and observational evidence. Mar Ecol Prog Ser 187:59–66

    Article  Google Scholar 

  • Wahl M et al (2010) Ecology of antifouling resistance in the bladder wrack Fucus vesiculosus: patterns of microfouling and antimicrobial protection. Mar Ecol Prog Ser 411:33–48

    Article  Google Scholar 

  • Werner FJ, Graiff A, Matthiessen B (2016) Even moderate nutrient enrichment negatively adds up to global climate change effects on a habitat-forming seaweed system. Limnol Oceanogr 61:1891–1899. https://doi.org/10.1002/lno.10342

    Article  CAS  Google Scholar 

  • Worm B, Lotze HK, Sommer U (2000) Coastal food web structure, carbon storage, and nitrogen retention regulated by consumer pressure and nutrient loading. Limnol Oceanogr 45(2):339–349

    Article  CAS  Google Scholar 

  • Zuccaro A et al (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74(4):931–941

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, S.K., Ingle, K.N., Mantri, V.A. (2020). Epiphytism in Seaweed Farming: Causes, Status, and Implications. In: Gothandam, K., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Environmental Biotechnology Vol. 1. Environmental Chemistry for a Sustainable World, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-030-38192-9_9

Download citation

Publish with us

Policies and ethics