Skip to main content

Environmental Metabolomics: With the Perspective of Marine Toxicology Assessment

  • Chapter
  • First Online:
Environmental Biotechnology Vol. 1

Abstract

Environmental metabolomics or metabonomics is the study of interactions and impact of stressors from external sources on metabolites of an organism living in it. Marine environmental stress has become a global concern in the recent past as the marine biological environment is immensely complex when compared to the other environments on this planet. The major concern can be attributed to the comprehensive growth of anthropogenic activities in the marine environment. In the recent years, application of environmental metabolomics in the stressed marine environments has proved to increase our knowledge about toxic mechanism on the residing organisms to a greater extent.

In the current chapter, we review the present scenario of the metabolomics with the perspective of its applications in toxicology assessments, especially in the marine environments. The compilation would guide us through the plausible steps to be taken for further improvements in the toxicology study protocols, thus leading to prepare a database of signature molecules responding to specific stress/hazards as well as those specific to the uniqueness of each niche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan G, Burnell G (eds) (2013) Advances in aquaculture hatchery technology. Woodhead Publishing Limited, Oxford

    Google Scholar 

  • Aursand M, Standal IB, Axelson DE (2007) High-resolution 13Cnuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules. J Agric Food Chem 55(1):38–47

    Article  CAS  PubMed  Google Scholar 

  • Aursand M, Standal IB, Prael A, McEvoy L, Irvine J, Axelson DE (2009) 13C NMR pattern recognition techniques for the classification of Atlantic salmon (Salmo salar L.) according to their wild, farmed, and geographical origin. J Agric Food Chem 57(9):3444–3451

    Article  CAS  PubMed  Google Scholar 

  • Bennett D (2005) Growing pains for metabolomics. Scientist 19(8):25–28. http://www.the-scientist.com/article/display/15427/

    Google Scholar 

  • Bertoldo MJ, Nadal-Desbarats L, Gerard N, Dubois A, Holyoake PK, Grupen CG (2013) Differences in the metabolomic signatures of porcine follicular fluid collected from environments associated with good and poor oocyte quality. Reproduction 146(3):221–231

    Article  CAS  PubMed  Google Scholar 

  • Blindheim S, Nylund A, Watanabe K, Plarre H, Erstad B, Nylund S (2015) A new aquareovirus causing high mortality infarmed Atlantic halibut fry in Norway. Arch Virol 160(1):91–102

    Article  CAS  PubMed  Google Scholar 

  • Calado R, Vitorino A, Reis A, Lopes da Silva T, Dinis MT (2009) Effect of different diets on larval production, quality and fatty acid profile of the marine ornamental shrimp Lysmata amboinensis (De Man, 1888), using wild larvae as a standard. Aquac Nutr 15(5):484–491

    Article  CAS  Google Scholar 

  • Campillo JA, Sevilla A, Albentosa M, Bernal C, Lozano AB, Canovas M et al (2015) Metabolomic responses in caged clams, Ruditapes decussatus, exposed to agricultural and urban inputs in a Mediterranean coastal lagoon (Mar Menor, SE Spain). Sci Total Environ 524:136–147

    Article  PubMed  CAS  Google Scholar 

  • Cappello T, Mauceri A, Corsaro C, Maisano M, Parrino V, Lo Paro G et al (2013) Impact of environmental pollution on caged mussels Mytilus galloprovincialis using NMR based metabolomics. Mar Pollut Bull 77(1–2):132–139

    Article  CAS  PubMed  Google Scholar 

  • Cappello T, Maisano M, Giannetto A, Parrino V, Mauceri A, Fasulo S (2015) Neurotoxicological effects on marine mussel Mytilus galloprovincialis caged at petrochemical contaminated areas (eastern Sicily, Italy): 1H NMR and immunohistochemical assays. Comp Biochem Physiol Part C: Toxicol Pharmacol 169:7–15

    CAS  Google Scholar 

  • Castejon D, Villa P, Calvo MM, Santa-Marıa G, Herraiz M, Herrera A (2010) 1H-HRMAS NMR study of smoked Atlantic salmon (Salmo salar). Magn Reson Chem 48(9):693–703

    Article  CAS  PubMed  Google Scholar 

  • Castejon D, Garcıa-Segura JM, Herrera A, Cambero MI (2016) NMR-detection of methylamine compounds in Atlantic salmon (Salmo salar) subjected to E-beam irradiation. Food Control 60:455–460

    Article  CAS  Google Scholar 

  • Castro-Puyana M, Herrero M (2013) Metabolomics approaches based on mass spectrometry for food safety, quality and traceability. Trends Anal Chem 52:74–87

    Article  CAS  Google Scholar 

  • Chen S, Zhang C, Xiong Y, Tian X, Liu C, Jeevithan E et al (2015) A GC–MS-based metabolomics investigation on scallop (Chlamys farreri) during semi-anhydrous living-preservation. Innov Food Sci Emerg Technol 31:185–195

    Article  CAS  Google Scholar 

  • Cheng ZX, Ma YM, Li H, Peng XX (2014) N-acetylglucosamine enhances survival ability of tilapias infected by Streptococcus iniae. Fish Shellfish Immunol 40(2):524–530

    Article  CAS  PubMed  Google Scholar 

  • Cipriano RC, Smith ML, Vermeersch KA, Dove AD, Styczynski MP (2015) Differential metabolite levels in response to spawning-induced in appetence in Atlantic salmon Salmo salar. Comp Biochem Physiol Part D: Genom Proteom 13:52–59

    CAS  Google Scholar 

  • Clasen B, Loro VL, Murussi CR, Tiecher TL, Moraes B, Zanella R (2018) Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Sci Total Environ 626:737–743. https://doi.org/10.1016/j.scitotenv.2018.01.154

    Article  CAS  PubMed  Google Scholar 

  • Collette TW, Teng Q, Jensen KM, Kahl MD, Makynen EA, Durhan EJ (2010) Impacts of an anti-androgen and an androgen/anti-androgen mixture on the metabolite profile of male fathead minnow urine. Environ Sci Technol 44(17):6881–6886. https://doi.org/10.1021/es1011884

    Article  CAS  PubMed  Google Scholar 

  • Cortezzi SS, Cabral EC, Trevisan MG, Ferreira CR, Setti AS, Braga DPDAF et al (2013) Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium. Reproduction 145(5):453–462

    Article  CAS  PubMed  Google Scholar 

  • Courant F, Antignac J-P, Monteau F, Le Bizec B (2013) Metabolomics as a potential new approach for investigating human reproductive disorders. J Proteome Res 12(6):2914–2920

    Article  CAS  PubMed  Google Scholar 

  • Cubero-Leon E, Penalver R, Maquet A (2014) Review on metabolomics for food authentication. Food Res Int 60:95–107

    Article  CAS  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/nature12820

    Article  CAS  PubMed  Google Scholar 

  • Dove ADM, Leisen J, Zhou MS, Byrne JJ, Lim-Hing K, Webb HD et al (2012) Biomarkers of whale shark health: a metabolomic approach. PLoS One 7(11):e49379. https://doi.org/10.1371/journal.pone.0049379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duflos G, Leduc F, N’Guessan A, Krzewinski F, Kol O, Malle P (2010) Freshness characterisation of whiting (Merlangius merlangus) using an SPME/GC/MS method and a statistical multivariate approach. J Sci Food Agric 90:2568–2575

    Article  CAS  PubMed  Google Scholar 

  • Egan S, Gardiner M (2016) Microbial dysbiosis: rethinking disease in marine ecosystems. Front Microbiol 7:991. https://doi.org/10.3389/fmicb.2016.00991

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekman DR, Teng Q, Jensen KM, Martinovic D, Villeneuve DL, Ankley GT, Collette TW (2007) NMR analysis of male fathead minnow urinary metabolites: a potential approach for studying impacts of chemical exposures. Aquat Toxicol 85(2):104–112. https://doi.org/10.1016/j.aquatox.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  • Ekman DR, Teng Q, Villeneuve DL, Kahl MD, Jensen KM, Durhan EJ et al (2008) Investigating compensation and recovery of fathead minnow (Pimephales promelas) exposed to 17-ethynylestradiol with metabolite profiling. Environ Sci Technol 42(11):4188–4194. https://doi.org/10.1021/es8000618

    Article  CAS  PubMed  Google Scholar 

  • Ekman DR, Teng Q, Villeneuve DL, Kahl MD, Jensen KM, Durhan EJ et al (2009) Profiling lipid metabolites yields unique information on sex- and time-dependent responses of fathead minnows (Pimephales promelas) exposed to 17-ethynylestradiol. Metabolomics 5(1):22–32. https://doi.org/10.1007/s11306-008-0138-y

    Article  CAS  Google Scholar 

  • Ellis RP, Spicer JI, Byrne JJ, Sommer U, Viant MR, White DA et al (2014) 1H NMR metabolomics reveals contrasting response by male and female mussels exposed to reduced sea water pH, increased temperature, and a pathogen. Environ Sci Technol 48(12):7044–7052

    Article  CAS  PubMed  Google Scholar 

  • Fasulo S, Iacono F, Cappello T, Corsaro C, Maisano M, D'Agata A et al (2012) Metabolomic investigation of Mytilus galloprovincialis (Lamarck 1819) caged in aquatic environments. Ecotoxicity Environ Saf 84:139–146. https://doi.org/10.1016/j.ecoenv.2012.07.001

    Article  CAS  Google Scholar 

  • Girón-Pérez MI (2010) Relationships between innate immunity in bivalve molluscs and environmental pollution. Invertebr Surviv J 7:149–156

    Google Scholar 

  • Guo C, Huang X-Y, Yang M-J, Wang S, Ren S-T, Peng X-X (2014) GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. Fish Shellfish Immunol 39(2):215–222

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Peng B, Song M, Wu CW, Yang MJ, Zhang JY et al (2015) Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. Fish Shellfish Immunol 47(2):664–673

    Article  CAS  PubMed  Google Scholar 

  • Hamdi C, Balloi A, Essanaa J, Crotti E, Gonella E et al (2011) Gut microbiome dysbiosis and honeybee health. J Appl Entomol 135:524–533. https://doi.org/10.1111/j.1439-0418.2010.01609.x

    Article  Google Scholar 

  • Hamre K, Yufera M, Rønnestad I, Boglione C, Conceicao LE, Izquierdo M (2013) Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Rev Aquac 5(s1):S26–S58

    Article  Google Scholar 

  • Hanana H, Simon S, Kervarec N, Cerantola S (2014) Evaluation of toxicological effects induced by tributyltin in clam Ruditapes decussatus using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy: study of metabolic responses in heart tissue and detection of a novel metabolite. Toxicol Rep 1:777–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M et al (2012) ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487:477–481. https://doi.org/10.1038/nature11228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heintz C, Mair W (2014) You are what you host: microbiome modulation of the aging process. Cell 156:408–411. https://doi.org/10.1016/j.cell.2014.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heude C, Lemasson E, Elbayed K, Piotto M (2014) Rapid assessment of fish freshness and quality by 1H HR-MAS NMR spectroscopy. Food Anal Methods 8(4):907–915

    Article  Google Scholar 

  • Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK (2011) Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends Microbiol 19:349–359. https://doi.org/10.1016/j.tim.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  • Huang SM, Xu F, Lam SH, Gong Z, Ong CN (2013) Metabolomics of developing zebra fish embryos using gas chromatography-and liquid chromatography-mass spectrometry. Mol BioSyst 9(6):1372–1380

    Article  CAS  PubMed  Google Scholar 

  • Ji C, Wu H, Wei L, Zhao J, Wang Q, Lu H (2013) Responses of Mytilusgallo provincialis to bacterial challenges by metabolomics and proteomics. Fish Shellfish Immunol 35(2):489–498

    Article  CAS  PubMed  Google Scholar 

  • Ji C, Wei L, Zhao J, Wu H (2014) Metabolomic analysis revealed that female mussel Mytilusgallo provincialis was sensitive to bisphenol a exposures. Environ Toxicol Pharmacol 37:844–849

    Article  CAS  PubMed  Google Scholar 

  • Ji C, Wu H, Zhou M, Zhao J (2015a) Multiple biomarkers of biological effects induced by cadmium in clam Ruditapes philippinarum. Fish Shellfish Immunol 44(2):430–435

    Article  CAS  PubMed  Google Scholar 

  • Ji C, Wang Q, Wu H, Tan Q, Wang W-X (2015b) A metabolomics investigation of the effects of metal pollution in oysters Crassostrea hongkongensis. Mar Pollut Bull 90(1–2):317–322

    Article  CAS  PubMed  Google Scholar 

  • Ji C, Cao L, Li F (2015c) Toxicological evaluation of two pedigrees of clam Ruditapes philippinarum as bioindicators of heavy metal contaminants using metabolomics. Environ Toxicol Pharmacol 39(2):545–554

    Article  CAS  PubMed  Google Scholar 

  • Jones OAH, Dondero F, Viarengo A, Griffin JL (2008) Metabolic profiling of Mytilusgallo provincialis and its potential applications for pollution assessment. Mar Ecol Prog Ser 369:169–179. https://doi.org/10.3354/meps07654

    Article  CAS  Google Scholar 

  • Jordan KW, Nordenstam J, Lauwers GY, Rothenberger DA, Alavi K, Garwood M, Cheng LL (2009) Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum 52(3):520–525. https://doi.org/10.1007/DCR.0b013e31819c9a2c

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kim J, Yun EJ, Kim KH (2016) Food metabolomics: from farm to human. Curr Opin Biotechnol 37:16–23

    Article  CAS  PubMed  Google Scholar 

  • Kokushi E, Uno S, Harada T, Koyama J (2012) 1H NMR-based metabolomics approach to assess toxicity of bunker a heavy oil to freshwater carp, Cyprinus carpio. Environ Toxicol 27(7):404–414. https://doi.org/10.1002/tox.20653. PMID:20882592

    Article  CAS  PubMed  Google Scholar 

  • Kokushi E, Uno S, Pal S, Koyama J (2015) Effects of chlorpyrifos on the metabolome of the freshwater carp, Cyprinus carpio. Environ Toxicol 30(3):253–260

    Article  CAS  PubMed  Google Scholar 

  • Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–480. https://doi.org/10.1016/j.cell.2012.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kousoulaki K, Bogevik AS, Skiftesvik AB, Jensen PA, Opstad I (2015) Marine raw material choice, quality and weaning performance of Ballan wrasse (Labrus bergylta) larvae. Aquac Nutr 21(5):644–654

    Article  CAS  Google Scholar 

  • Kullgren A, Samuelsson LM, Larsson DG, Björnsson BT, Bergman EJ (2010) A metabolomics approach to elucidate effects of food deprivation in juvenile rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 299(6):R1440–R1448

    Article  CAS  PubMed  Google Scholar 

  • Kullgren A, Jutfelt F, Fontanillas R, Sundell K, Samuelsson L, Wiklander K et al (2013) The impact of temperature on the metabolome and endocrine metabolic signals in Atlantic salmon (Salmo salar). Comput Biochem Physiol Part A Mol Integr Physiol 164(1):44–53. https://doi.org/10.1016/j.cbpa.2012.10.005

    Article  CAS  Google Scholar 

  • Kumar A, Kroetsch T, Blondin P, Anzar M (2015) Fertility-associated metabolites in bull seminal plasma and blood serum:1H nuclear magnetic resonance analysis. Mol Reprod Dev 82(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Kwon YK, Jung YS, Park JC, Seo J, Choi MS, Hwang GS (2012) Characterizing the effect of heavy metal contamination on marine mussels using metabolomics. Mar Pollut Bull 64(9):1874–1879. https://doi.org/10.1016/j.marpolbul.2012.06.012. PMID:22770532

    Article  CAS  PubMed  Google Scholar 

  • Leduc F, Krzewinski F, Le Fur B, N’Guessan A, Malle P, Kol O et al (2012) Differentiation of fresh and frozen/thawed fish, European sea bass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), cod (Gadus morhua) and salmon (Salmo salar), using volatile compounds by SPME/GC/MS. J Sci Food Agric 92:2560–2568

    Article  CAS  PubMed  Google Scholar 

  • Leonard JA, Cope WG, Barnhart MC, Bringolf RB (2014) Metabolomic, behavioral, and reproductive effects of the aromatase inhibitor fadrozole hydrochloride on the unionid mussel Lampsilis fasciola. Gen Comp Endocrinol 206:213–226

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li J, Wang Y, Fu L, Fu Y, Li B et al (2011) Aquaculture industry in China: current state, challenges, and outlook. Rev Fish Sci 19(3):187–200

    Article  CAS  Google Scholar 

  • Liu X, Ji C, Zhao J, Wu H (2013a) Differential metabolic responses of clam Ruditapes philippinarum to Vibrio anguillarum and Vibrio splendidus challenges. Fish Shellfish Immunol 35(6):2001–2007

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zhao J, Wu H, Wang Q (2013b) Metabolomic analysis revealed the differential responses in two pedigrees of clam Ruditapes philippinarum towards Vibrio harveyi challenge. Fish Shellfish Immunol 35(6):1969–1975

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Sun H, Wang Y, Ma M, Zhang Y (2014a) Gender-specific metabolic responses in hepatopancreas of mussel Mytilus galloprovincialis challenged by Vibrio harveyi. Fish Shellfish Immunol 40(2):407–413

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ji C, Zhao J, Wang Q, Li F, Wu H (2014b) Metabolic profiling of the tissue-specific responses in mussel Mytilus galloprovincialis towards Vibrio harveyi challenge. Fish Shellfish Immunol 39(2):372–377

    Article  CAS  PubMed  Google Scholar 

  • Liu PF, Liu QH, Wu Y, Jie H (2015) A pilot metabolic profiling study in hepatopancreas of Litopenaeus vannamei with white spot syndrome virus based on 1H NMR spectroscopy. J Invertebr Pathol 124:51–56

    Article  CAS  PubMed  Google Scholar 

  • Locci E, Piras C, Mereu S, Marincola FC, Scano P (2011) 1HNMR metabolite fingerprint and pattern recognition of mullet (Mugil cephalus) bottarga. J Agric Food Chem 59(17):9497–9505

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Yang Y, Tao Y, Jiang Y, Chen B, Zhu X et al (2017) A mechanism study on toxicity of graphene oxide to Daphnia magna: Direct link between bioaccumulation and oxidative stress. Environ Pollut 234. https://doi.org/10.1016/j.envpol.2017.12.034

  • Ma YM, Yang MJ, Wang S, Li H, Peng XX (2015) Liver functional metabolomics discloses an action of l-leucine against Streptococcus iniae infection in tilapias. Fish Shellfish Immunol 45(2):414–421

    Article  CAS  PubMed  Google Scholar 

  • Manley CB, Rakocinski CF, Lee PG, Blaylock RB (2014) Stocking density effects on aggressive and cannibalistic behaviors in larval hatchery-reared spotted sea trout, Cynoscion nebulosus. Aquaculture 420–421:89–94

    Article  Google Scholar 

  • Mannina L, Sobolev AP, Capitani D (2012) Applications of NMR metabolomics to the study of foodstuffs: truffle, kiwifruit, lettuce, and sea bass. Electrophoresis 33(15):2290–2313

    Article  CAS  PubMed  Google Scholar 

  • Martinovic-Weigelt D, Ekman DR, Villeneuve DL, James CM, Teng Q, Collette TW, Ankley GT (2012) Fishy aroma of social status: urinary chemo-signalling of territoriality in male fathead minnows (Pimephales promelas). PLoS One 7(11):e46579. https://doi.org/10.1371/journal.pone.0046579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis R, Cappuccinelli R, Roggio T, Anedda R (2014) Addressing market place gilthead sea bream (Sparus aurata L.) differentiation by 1H NMR-based lipid fingerprinting. Food Res Int 63(B):258–264

    Article  CAS  Google Scholar 

  • Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF (2014) The microbiome: stress, health and disease. Mamm Genome 25:49–74. https://doi.org/10.1007/s00335-013-9488-5

    Article  CAS  PubMed  Google Scholar 

  • Morley NJ (2010) Interactive effects of infectious diseases and pollution in aquatic molluscs. Aquat Toxicol 96(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Morrison N, Bearden D, Bundy JG, Collette T, Currie F, Davey MP et al (2007) Standard reporting requirements for biological samples in metabolomics experiments: environmental context. Metabolomics 3(3):203–210. https://doi.org/10.1007/s11306-007-0067-1

    Article  CAS  Google Scholar 

  • Nagato EG, D’eon JC, Lankadurai BP, Poirer DG, Reiner EJ, Simpson AJ, Simpson MJ (2013) 1H NMR-based metabolomics investigation of Daphnia magna responses to sub-lethal exposure to arsenic, copper and lithium. Chemosphere. https://doi.org/10.1016/j.chemosphere.2013.04.085

  • Nelson JR, Schwartz TS, Gohlke JM (2018) Influence of maternal age on the effects of seleno-l-methionine in the model organism Daphnia pulex under standard and heat stress conditions. Reprod Toxicol 75:1–9. https://doi.org/10.1016/j.reprotox.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267. https://doi.org/10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  • Nikinmaa M (2014) Chapter 2: What causes aquatic contamination? In: Nikinmaa M (ed) An introduction to aquatic toxicology. Academic, pp 19–39. https://doi.org/10.1016/B978-0-12-411574-3.00002-5. ISBN: 9780124115743. http://www.sciencedirect.com/science/article/pii/B9780124115743000025

  • Nollet LM, Toldra F (eds) (2010) Sensory analysis of foods of animal origin. CRC Press, Boca Raton

    Google Scholar 

  • O’Connor S, Moltschaniwskyj N, Bolch CJ, O’Connor W (2012) Dietary influence on growth and development of flat oyster, Ostrea angasi (Sowerby, 1871), larvae. Aquac Res 43(9):1317–1327

    Article  Google Scholar 

  • Papan C, Chen L (2009) Metabolic fingerprinting reveals developmental regulation of metabolites during early zebrafish embryogenesis. OMICS J Integr Biol 13(5):397–405

    Article  CAS  Google Scholar 

  • Parolini M, Felice B, Ferrario C, Salgueiro-González N, Castiglioni S, Finizio A et al (2018) Benzoylecgonine exposure induced oxidative stress and altered swimming behavior and reproduction in Daphnia magna. Environ Pollut 232:236–244. https://doi.org/10.1016/j.envpol.2017.09.038

    Article  CAS  PubMed  Google Scholar 

  • Peeler JE, Reese RA, Cheslett DL, Geoghegan F, Power A, Trush MA (2012) Investigation of mortality in Pacific oysters associated with Ostreid herpesvirus-1 Var in the Republic of Ireland in 2009. Prev Vet Med 105(1–2):136–143

    Article  PubMed  Google Scholar 

  • Peng B, Ma YM, Zhang JY, Li H (2015) Metabolome strategy against Edwardsiella tarda infection through glucose enhanced metabolic modulation in tilapias. Fish Shellfish Immunol 45(2):869–876

    Article  CAS  PubMed  Google Scholar 

  • Picone G, Engelsen SB, Savorani F, Testi S, Badiani A, Capozzi F (2011) Metabolomics as a powerful tool for molecular quality assessment of the fish Sparus aurata. Nutrients 3(2):212–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poynton HC, Taylor NS, Hicks J, Colson K, Chan SR, Clark C et al (2011) Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium. Environ Sci Technol 45(8):3710–3717. https://doi.org/10.1021/es1037222

    Article  CAS  PubMed  Google Scholar 

  • Purcell SW, Hair CA, Mills DJ (2012) Sea cucumber culture, farming and sea ranching in the tropics: progress, problems and opportunities. Aquaculture 368–369:68–81

    Article  Google Scholar 

  • Ralston-Hooper K, Hopf A, Oh C, Zhang X, Adamec J, Sepúlveda MS (2008) Development of GC×GC/TOF-MS metabolomics for use in ecotoxicological studies with invertebrates. Aquat Toxicol 88(1):48–52. https://doi.org/10.1016/j.aquatox.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  • Raterink RJ, van der Kloet FM, Li J, Wattel NA, Schaaf MJM, Spaink HP et al (2013) Rapid metabolic screening of early zebrafish embryogenesis based on direct infusion-nano ESIFTMS. Metabolomics 9(4):864–873

    Article  CAS  Google Scholar 

  • Richards GP, Watson MA, Needleman DS, Church KM, Häse CC (2015a) Mortalities of Eastern and Pacific oyster larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii. Appl Environ Microbiol 81(1):292–297

    Article  PubMed  CAS  Google Scholar 

  • Richards RG, Davidson AT, Meynecke J-O, Beattie K, Hernaman V, Lynam T et al (2015b) Effects and mitigations of ocean acidification on wild and aquaculture scallop and prawn fisheries in Queensland, Australia. Fish Res 161:42–56

    Article  Google Scholar 

  • Rosenblum ES, Viant MR, Braid BM, Moore JD, Friedman CS, Tjeerdema RS (2005) Effects of temperature on host-pathogen-drug interactions in red abalone, Haliotis rufescens, determined by 1H NMR metabolomics. Environ Sci Technol 40(22):7077–7084

    Article  CAS  Google Scholar 

  • Rosenblum ES, Tjeerdema RS, Viant MR (2006) Characterizing the metabolic actions of natural stresses in the California red abalone, Haliotis rufescens using 1H NMR metabolomics. Metabolomics 1(2):199–209

    Article  CAS  Google Scholar 

  • Rubert J, Zachariasova M, Hajslova J (2015) Advances in high resolution mass spectrometry based on metabolomics studies for food – a review. Food Addit Contam Part A 32(10):1685–1708

    Article  CAS  Google Scholar 

  • Russo R, Becker JM, Liess M (2018) Sequential exposure to low levels of pesticides and temperature stress increase toxicological sensitivity of crustaceans. Sci Total Environ 610-611:563–569. https://doi.org/10.1016/j.scitotenv.2017.08.073

    Article  CAS  PubMed  Google Scholar 

  • Salze G, Craig SR, Smith BH, Smith EP, McLean E (2011) Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation. J Fish Biol 78(5):1470–1491

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson LM, Förlin L, Karlsson G, Adolfsson-Erici M, Larsson DGJ (2006) Using NMR metabolomics to identify responses of an environmental estrogen in blood plasma of fish. Aquat Toxicol 78(4):341–349. https://doi.org/10.1016/j.aquatox.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson LM, Björlenius B, Förlin L, Larsson DGJ (2011) Reproducible 1H NMR-based metabolomic responses in fish exposed to different sewage effluents in two separate studies. Environ Sci Technol 45(4):1703–1710. https://doi.org/10.1021/es104111x. PMID:21261249

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Martınez JG, Aguirre-Guzm an G, Mejıa-Ruız H (2007) White spot syndrome virus in cultured shrimp: a review. Aquac Res 38(13):1339–1354

    Article  CAS  Google Scholar 

  • Savorani F, Picone G, Badiani A, Fagioli P, Capozzi F, Engelsen SB (2010) Metabolic profiling and aquaculture differentiation of gilthead sea bream by 1H NMR metabonomics. Food Chem 120(3):907–914

    Article  CAS  Google Scholar 

  • Scharschmidt TC, Fischbach MA (2013) What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov 10:e83–e89. https://doi.org/10.1016/j.ddmec.2012.12.003

    Article  Google Scholar 

  • Schock TB, Stancyk DA, Thibodeaux L, Burnett KG, Burnett LE, Boroujerdi AF et al (2010) Metabolomic analysis of Atlantic blue crab, Callinectes sapidus, hemolymph following oxidative stress. Metabolomics 6(2):250–262

    Article  CAS  Google Scholar 

  • Schock TB, Newton S, Brenkert K, Leffler J, Bearden DW (2012) An NMR-based metabolomic assessment of cultured cobia health in response to dietary manipulation. Food Chem 133(1):90–101

    Article  CAS  Google Scholar 

  • Schock TB, Duke J, Goodson A, Weldon D, Brunson J, Leffler JW et al (2013) Evaluation of Pacific white shrimp (Litopenaeus vannamei) health during a super intensive aquaculture Growout using NMR-based metabolomics. PLoS One 8(3):e59521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumilina E, Ciampa A, Capozzi F, Rustad T, Dikiy A (2015) NMR approach for monitoring post-mortem changes in Atlantic salmon fillets stored at 0 and 4°C. Food Chem 184:12–22

    Article  CAS  PubMed  Google Scholar 

  • Silva TS, da Costa AMR, LEC C~a, Dias JP, Rodrigues PML, Richard N (2014) Metabolic fingerprinting of gilt head sea bream (Sparus aurata) liver to track interactions between dietary factors and seasonal temperature variations. Peer J 2:e527

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Soanes KH, Achenbach JC, Burton IW, Hui JPM, Penny SL, Karakach TK (2011) Molecular characterization of zebrafish embryogenesis via DNA microarrays and multiplatform time course metabolomics studies. J Proteome Res 10(11):5102–5117

    Article  CAS  PubMed  Google Scholar 

  • Solomieu VB, Renault T, Travers MA (2015) Mass mortality in bivalves and the intricate case of the Pacific oyster, Crassostrea gigas. J Invertebr Pathol 131:2–10

    Article  Google Scholar 

  • Song Q, Chen H, Li Y, Zhou H, Han Q, Diao X (2016) Toxicological effects of benzo(a)pyrene, DDT and their mixture on the green mussel Perna viridis revealed by proteomic and metabolomic approaches. Chemosphere 144:214–224

    Article  CAS  PubMed  Google Scholar 

  • Sørensen SR, Skov PV, Lauesen P, Tomkiewicz J, Bossier P, deSchryver P (2014) Microbial interference and potential control in culture of European eel (Anguilla anguilla) embryos and larvae. Aquaculture 426–427:1–8

    Article  Google Scholar 

  • Southam AD, Easton JM, Stentiford GD, Ludwig C, Arvanitis TN, Viant MR (2008) Metabolic changes in flatfish hepatic tumours revealed by NMR-based metabolomics and metabolic correlation networks. J Proteome Res 7(12):5277–5285

    Article  CAS  PubMed  Google Scholar 

  • Spann N, Aldridge DC, Griffin JL, Jones OAH (2011) Size-dependent effects of low level cadmium and zinc exposure on the metabolome of the Asian clam, Corbicula fluminea. Aquat Toxicol 105(3–4):589–599. https://doi.org/10.1016/j.aquatox.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  • Stentiford GD, Viant MR, Ward DG, Johnson PJ, Martin A, Wenbin W et al (2005) Liver tumors in wild flatfish: a histopathological, proteomic, and metabolomic study. OMICS 9(3):281–299. https://doi.org/10.1089/omi.2005.9.281

    Article  CAS  PubMed  Google Scholar 

  • Su YB, Peng B, Han Y, Li H, Peng XX (2015) Fructose restores susceptibility of multidrug-resistant Edwardsiella tarda to kanamycin. J Proteome Res 14(3):1612–1620

    Article  CAS  PubMed  Google Scholar 

  • Taylor NS, Weber RJM, Southam AD, Payne TG, Hrydziuszko O, Arvanitis TN, Viant MR (2009) A new approach to toxicity testing in Daphnia magna: application of high throughput FT–ICR mass spectrometry metabolomics. Metabolomics 5(1):44–58. https://doi.org/10.1007/s11306-008-0133-3

    Article  CAS  Google Scholar 

  • Taylor NS, Weber RJM, White TA, Viant MR (2010) Discriminating between different acute chemical toxicities via changes in the daphnid metabolome. Toxicol Sci 118(1):307–317. https://doi.org/10.1093/toxsci/kfq247

    Article  CAS  PubMed  Google Scholar 

  • Teng Q, Ekman DR, Huang W, Collette TW (2013) Impacts of 17 α-ethinyl estradiol exposure on metabolite profiles of zebrafish (Danio rerio) liver cells. Aquat Toxicol 130–131:184–191. https://doi.org/10.1016/j.aquatox.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  • Thunathong T, Francis DS, Senadheera SPSD, Jones PL, Turchini GM (2012) Short-term food deprivation before a fish oil finishing strategy improves the deposition of n-3 LC-PUFA, but not the washing-out of C18 PUFA in rainbow trout. Aquacult Nutr 18(4):441–456

    Article  CAS  Google Scholar 

  • Trimigno A, Marincola FC, Dellarosa N, Picone G, Laghi L (2015) Definition of food quality by NMR-based foodomics. Curr Opin Food Sci 4:99–104

    Article  Google Scholar 

  • Tuffnail W, Mills GA, Cary P, Greenwood R (2009) An environmental 1HNMR metabolomic study of the exposure of the marine mussel Mytilus edulis to atrazine, lindane, hypoxia and starvation. Metabolomics 5(1):33–43. https://doi.org/10.1007/s11306-008-0143-1

    Article  CAS  Google Scholar 

  • Uno S, Shintoyo A, Kokushi E, Yamamoto M, Nakayama K, Koyama J (2012) Gas chromatography–mass spectrometry for metabolite profiling of Japanese medaka (Oryzias latipes) juveniles exposed to malathion. Environ Sci Pollut Res 19(7):2595–2605. https://doi.org/10.1007/s11356-012-0834-z

    Article  CAS  Google Scholar 

  • Van Scoy AR, Anderson BS, Philips BM, Voorhees J, McCann M, De Haro H et al (2012) NMR-based characterization of the acute metabolic effects of weathered crude and dispersed oil in spawning top smelt and their embryos. Ecotoxicol Environ Saf 78:99–109. https://doi.org/10.1016/j.ecoenv.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  • Vandenbrouck T, Jones OAH, Dom N, Griffin JL, De Coen W (2010) Mixtures of similarly acting compounds in Daphnia magna: from gene to metabolite and beyond. Environ Int 36(3):254–268. https://doi.org/10.1016/j.envint.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  • Viant MR, Pincetich CA, Tjeerdema RST (2006) Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics. Aquat Toxicol 77(4):359–371. https://doi.org/10.1016/j.aquatox.2006.01.009. PMID: 16488491

    Article  CAS  PubMed  Google Scholar 

  • Villa P, Castejon D, Herraiz M, Herrera A (2013) 1H-HRMASNMR study of cold smoked Atlantic salmon (Salmo salar)treated with E-beam. Magn Reson Chem 51(6):350–357

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Harwood JD, Zhang Q (2018) Oxidative stress and DNA damage in common carp (Cyprinus carpio) exposed to the herbicide mesotrione. Chemosphere 193:1080–1086. https://doi.org/10.1016/j.chemosphere.2017.11.148

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Meyer KA, Jackson TM, Schock TM, Johnson WE, Bearden DW (2015) Application of NMR-based metabolomics for environmental assessment in the Great Lakes using zebra mussel (Dreissena polymorpha). Metabolomics 11(5):1302–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Wang W-X (2010) NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis. Aquat Toxicol 100(4):339–345. https://doi.org/10.1016/j.aquatox.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Liu X, Zhao J, Yu J (2012a) Toxicological responses in halophyte Suaeda salsa to mercury under environmentally relevant salinity. Ecotoxicol Environ Saf 85:64–71. https://doi.org/10.1016/j.ecoenv.2012.03.016

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Liu X, Zhao J, Yu J, Pang Q, Feng J (2012b) Toxicological effects of environmentally relevant lead and zinc in halophyte Suaeda salsa by NMR based metabolomics. Ecotoxicology 21(8):2363–2371. https://doi.org/10.1007/s10646-012-0992-2

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Ji C, Wei L, Zhao J, Lu H (2013a) Proteomic and metabolomics responses in hepatopancreas of Mytilus galloprovincialis challenged by Micrococcus luteus and Vibrio anguillarum. J Proteome 94:54–67

    Article  CAS  Google Scholar 

  • Wu H, Ji C, Wang Q, Liu X, Zhao J, Feng J (2013b) Manila clam Venerupis philippinarum as a biomonitor to metal pollution. Chin J Oceanol Limnol 31(1):65–74

    Article  CAS  Google Scholar 

  • Yao H, Yu J, Zhou Y, Xiang Q, Xu C (2018) The embryonic developmental effect of sedaxane on zebrafish (Danio rerio). Chemosphere 197:299–305. https://doi.org/10.1016/j.chemosphere.2018.01.046

    Article  CAS  PubMed  Google Scholar 

  • Young T, Alfaro AC, Villas-Boas S (2015a) Metabolic profiling of mussel larvae: effect of handling and culture conditions. Aquac Int. https://doi.org/10.1007/s10499-015-9945-0

  • Young T, Alfaro AC, Villas-Boas S (2015b) Identification of candidate biomarkers for quality assessment of hatchery-reared mussel larvae via GC/MS-based metabolomics. N Z J Mar Freshw Res 49(1):87–95

    Article  CAS  Google Scholar 

  • Zhao XL, Han Y, Ren ST, Ma YM, Li H, Peng XX (2015) L-proline increases survival of tilapias infected by Streptococcus agalactiae in higher water temperature. Fish Shellfish Immunol 44(1):33–42

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Chen B, Cai Z (2014) Metabolomics-based approach for assessing the toxicity mechanisms of dibutyl phthalate to abalone (Haliotis diversicolor supertexta). Environ Sci Pollut Res 22(7):5092–5099

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Science and Engineering Research Board, Government of India, for support in the form of Early Career Research Award – National Post Doctoral Fellowship to CSM (Grant No. PDF/2016/001239) and NMN (Grant No.PDF/2016/000190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mootapally Chandrashekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pabbathi, N.P.P., Nathani, N.M., Gadhvi, I.R., Chandrashekar, M. (2020). Environmental Metabolomics: With the Perspective of Marine Toxicology Assessment. In: Gothandam, K., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Environmental Biotechnology Vol. 1. Environmental Chemistry for a Sustainable World, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-030-38192-9_8

Download citation

Publish with us

Policies and ethics