Skip to main content

Uncemented Fixation

Is Uncemented Fixation Reliable Enough to Replace Cemented?

  • Chapter
  • First Online:
The Artificial Knee
  • 392 Accesses

Abstract

In parallel with using cement for fixing knee components to the bone, other investigators were convinced that a better method was to coat the components with a porous surface so that the bone would grow into the pores, forming a rigid and long-lasting bond. The feasibility was first demonstrated using porous ceramics, but this proved to be impractical because of fabrication problems of the components themselves. Another approach was to use crimped and sintered metal fibers, forming pads which could be sintered into pockets in solid metal components. Alternately, a porous layer was formed directly on the metal substrate by sintering a layer of small metal beads on the surfaces of the components. The earliest designs using these methods were the Miller-Galante (MG) knee and the porous-coated anatomic (PCA) knee. It was soon found that in order for ingrowth to occur, initial rigidity of the components to the bone was needed, which was not easy to achieve in the knee. Experiments by Volz showed that interface motions could be minimized if components were initially screwed in place, and this was successful until the screws themselves caused other problems. Today, new surfaces show promise for achieving the same reliability as cemented fixation, but more time is needed to compare long-term results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bargar WL. CORR Insights(R): the Mark Coventry Award: trabecular metal tibial components were durable and reliable in primary total knee arthroplasty: a randomized clinical trial. Clin Orthop Relat Res. 2015;473(1):43–4.

    Article  Google Scholar 

  • Bloebaum RD, Rubman MH, Hofmann AA. Bone ingrowth into porous-coated tibial components implanted with autograft bone chips. J Arthroplast. 1992;7(4):483–93.

    Article  CAS  Google Scholar 

  • Buechel FF, Pappas MJ. New Jersey low contact stress knee replacement system. Ten-year evaluation of meniscal bearings. Orthop Clin North Am. 1989;20(2):147–77.

    CAS  PubMed  Google Scholar 

  • Cheng CL, Gross AE. Loosening of the porous coating in total knee replacement. J Bone Joint Surg. 1988;70(3):377–81.

    Article  CAS  Google Scholar 

  • Collins DN, Heim SA, Nelson CL, Smith P, 3rd. Porous-coated anatomic total knee arthroplasty. A prospective analysis comparing cemented and cementless fixation. Clin Orthop Relat Res 1991(267):128-136.

    Google Scholar 

  • Freeman MA, McLeod HC, Levai JP. Cementless fixation of prosthetic components in total arthroplasty of the knee and hip. Clin Orthop Relat Res. 1983;(176):88–94.

    Google Scholar 

  • Galante J, Rostoker W, Lueck R, Ray RD. Sintered fiber metal composites as a basis for attachment of implants to bone. J Bone Joint Surg Am. 1971;53(1):101–14.

    Article  CAS  Google Scholar 

  • Goodman S, Aspenberg P. Effect of amplitude of micromotion on bone ingrowth into titanium chambers implanted in the rabbit tibia. Biomaterials. 1992;13(13):944–8.

    Article  CAS  Google Scholar 

  • Harwin SF, Patel NK, Chughtai M, et al. Outcomes of newer generation cementless total knee arthroplasty: beaded periapatite-coated vs highly porous titanium-coated implants. J Arthroplast. 2017;32(7):2156–60.

    Article  Google Scholar 

  • Hungerford DS, Kenna RV. Preliminary experience with a total knee prosthesis with porous coating used without cement. Clin Orthop Rel Res. 1983(176):95–107.

    Google Scholar 

  • Joseph J, Kaufman EE. Preliminary results of Miller-Galante uncemented total knee arthroplasty. Orthopedics. 1990;13(5):511–6.

    CAS  PubMed  Google Scholar 

  • Klawitter JJ, Bhatti NA. Ceramic prosthetic implant suitable for a knee joint plateau. US patent 4,000,525. Filed Aug. 21, 1975, Issued Jan 4, 1977.

    Google Scholar 

  • Klawitter J, Hulbert S. Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J Biomed Mater Res. 1971;5(6):161–229.

    Article  Google Scholar 

  • Kraay MJ, Meyers SA, Goldberg VM, Figgie HE 3rd, Conroy PA. “Hybrid” total knee arthroplasty with the Miller-Galante prosthesis. A prospective clinical and roentgenographic evaluation. Clin Orthop Relat Res. 1991;(273):32–41.

    Google Scholar 

  • Landon GC, Galante JO, Maley MM. Noncemented total knee arthroplasty. Clin Orthop Relat Res. 1986;(205):49–57.

    Google Scholar 

  • Lembert E, Galante J, Rostoker W. Fixation of skeletal replacement by fiber metal composites. Clin Orthop Relat Res. 1972;87:303–10.

    Article  CAS  Google Scholar 

  • Meneghini RM, Hanssen AD. Cementless fixation in total knee arthroplasty: past, present, and future. J Knee Surg. 2008;21(4):307–14.

    Article  Google Scholar 

  • Martens M, Ducheyne P, De Meester P, Mulier JC. Skeletal fixation of implants by bone ingrowth into surface pores. Arch Orthop Trauma Surg. 1980;97(2):111–6.

    Article  CAS  Google Scholar 

  • Newman JM, Sodhi N, Khlopas A, et al. Cementless total knee arthroplasty: a comprehensive review of the literature. Orthopedics. 2018;41(5):263–73.

    Article  Google Scholar 

  • Pilliar RM. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth. Clin Orthop Relat Res. 1983;(176):42–51.

    Google Scholar 

  • Ryd L. Micromotion in knee arthroplasty. A roentgen stereophotogrammetric analysis of tibial component fixation. Acta Orthop Scand Suppl. 1986;220:1–80.

    CAS  PubMed  Google Scholar 

  • Saers JPP, Cazorla-Bak Y, Shaw CN, Stock JT, Ryan TM. Trabecular bone structure variation throughout the lower limb. J Human Evol. 2016;97:97–108.

    Article  Google Scholar 

  • Selvik G. Roentgen stereophotogrammetry: a method for the study of the kinematics of the skeletal system. Reprint from the original 1974 thesis. Acta Orthopaedica Scandinavica Supplementum no. 232, Vol. 60.1989

    Google Scholar 

  • Small SR, Ritter MA, Merchun JG, Davis KE, Rogge RD. Changes in tibial bone density measured from standard radiographs in cemented and uncemented total knee replacements after ten years’ follow-up. Bone Joint J. 2013;95-b(7):911–6.

    Article  CAS  Google Scholar 

  • Spector M. Historical review of porous-coated implants. J Arthroplast. 1987;2(2):163–77.

    Article  CAS  Google Scholar 

  • Volz RG, Nisbet JK, Lee RW, McMurtry MG. The mechanical stability of various noncemented tibial components. Clin Orthop Relat Res. 1988;(226):38–42.

    Google Scholar 

  • Volz RG, Benjamin JB. The current status of total joint replacement. Investig Radiol. 1990;25(1):86–92.

    Article  CAS  Google Scholar 

  • Walker PS, Hsu HP, Zimmerman RA. A comparative study of uncemented tibial components. J Arthroplast. 1990;5(3):245–53.

    Article  CAS  Google Scholar 

  • Whiteside LA. Long-term followup of the bone-ingrowth Ortholoc knee system without a metal-backed patella. Clin Orthop Relat Res. 2001;388:77–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walker, P.S. (2020). Uncemented Fixation. In: The Artificial Knee. Springer, Cham. https://doi.org/10.1007/978-3-030-38171-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38171-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38170-7

  • Online ISBN: 978-3-030-38171-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics