Skip to main content

The Sol-Gel Chemistry of Oxides from Metal Salts

  • Chapter
  • First Online:
Introduction to Sol-Gel Processing

Abstract

This chapter is focused on the chemical transformations of metal salt solutions, to synthesize oxide sol-gel materials. The physicochemical characteristics of water, which is both a solvent and a sol-gel reagent, and of the main organic solvents are first summarized. The partial charge model is then presented as a global comprehensive support to the formation and transformation of the main cation complexes, in liquid medium. This part includes the role of anions and other complexing additives, such as the chelating agents. The following section then addresses the chemical reactions involved with water, traditionally divided into two groups: hydrolysis and condensation. The behavior of cationic solutions depending on the cation nature is next reviewed, in relationship with their electrostatic characteristics. The cases of Al and Si are examined in more detail. The mixing of several different cations is addressed in a further section which includes a relatively new sol-gel route known as the “Pechini method.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.W. Akitt, A. Farthing, J. Chem. Soc. Dalton Trans., 1624–1628 (1981)

    Google Scholar 

  • E.B. Araujo, J. Bratusek, D. Garcia, J.A. Eiras, J. Mater. Sci. Lett. 18, 1961–1962 (1999)

    Article  CAS  Google Scholar 

  • P. Atkins, Physical Chemistry, 5th edn. (W.H. Freeman & Company, New York, 1994)

    Google Scholar 

  • C.F. Baes Jr., R.E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976)

    Google Scholar 

  • J.C. Bailar, H.J. Emeleus, R. Nyholm, A.F. Trotman-Dickenson, Comprehensive Inorganic Chemistry. 2 (Pergamon, Oxford, 1973), p. 64

    Google Scholar 

  • T.F. Baumann, S.O. Kucheyev, A.E. Gash, J.H. Satcher Jr., Adv. Mater. 17, 1546–1548 (2005)

    Article  CAS  Google Scholar 

  • M.F. Bertino, R.R. Gadipalli, J.G. Story, C.G. Williams, G. Zhang, C. Sotiriou-Leventis, A.T. Tokuhiro, S. Guha, N. Leventis, Appl. Phys. Lett. 85, 6007–6009 (2004)

    Article  CAS  Google Scholar 

  • F.J. Broecker, W. Heckmann, F. Fischer, M. Mielke, J. Schroeder, A. Stange, Springer Proc. Phys. 6, 160–166 (1986)

    Article  CAS  Google Scholar 

  • M. Chabanel, P. Gressier, Liaison chimique et Spectroscopie (Marketing Ed, Paris, 1991)

    Google Scholar 

  • H. Chermette, R. Lissilour, Act. Chim. (France) 4, 59–69 (1985)

    Google Scholar 

  • C.N. Chervin, B.J. Clapsaddle, H.W. Chiu, A.E. Gash, J.H. Satcher Jr., S.M. Kauzlarich, Chem. Mater. 17, 3345–3351 (2005)

    Article  CAS  Google Scholar 

  • L. Ciavatta, D. Ferri, G. Riccio, Polyhedron 4, 15–22 (1985)

    Article  CAS  Google Scholar 

  • A. Clearfield, J. Mater. Res. 5, 161–162 (1990)

    Article  CAS  Google Scholar 

  • P. Colomban, L’industrie Céramique 792–793, 186–196 (1985)

    Google Scholar 

  • F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th edn. (Wiley-Interscience, New York, 1999)

    Google Scholar 

  • P. Courty, H. Ajot, C. Marcilly, Powder Technol. 7, 21–38 (1973)

    Article  CAS  Google Scholar 

  • E. Danielson, J.H. Golden, E.W. McFarland, C.M. Reaves, W.H. Weinberg, X.D. Wu, Nature 389, 944–948 (1997)

    Article  CAS  Google Scholar 

  • J. Davidovits, Geopolymer: Chemistry and Applications, 2nd edn. (Institut Géopolymère, St-Quentin, 2008)

    Google Scholar 

  • H. Dislich, J. Non-Cryst. Solids 57, 371–388 (1983)

    Article  CAS  Google Scholar 

  • A.M. Duprat, P. Alphonse, C. Sarda, A. Rousset, Mater. Chem. Phys. 37, 76–81 (1994)

    Article  CAS  Google Scholar 

  • J. Eid, A.C. Pierre, G. Baret, J. Non-Cryst. Solids 351, 218–227 (2005)

    Article  CAS  Google Scholar 

  • R.A. Fletcher, K.J.D. MacKenzie, C.L. Nicholson, S. Shimada, J. Eur. Ceram. Soc. 25, 1471–1477 (2005)

    Article  CAS  Google Scholar 

  • T. Furusaki, K. Kodaira, Preparation and Properties of In2O3 Thin Films by the Sol–Gel Method, in High Performance Ceramic Film and Coatings, (Elsevier, Amsterdam, 1991), pp. 241–247

    Google Scholar 

  • T. Furusaki, J. Takahashi, K. Kodaira, J. Ceram. Soc. Jpn. 102, 200–205 (1994)

    Article  CAS  Google Scholar 

  • K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, Inorg. Chem. Acta 446, 61–74 (2016)

    Article  CAS  Google Scholar 

  • A.E. Gash, M. Pantoya, J.H. Satcher, R.L. Simpson, Polymer Prepr. 49, 558–559 (2008)

    CAS  Google Scholar 

  • A.E. Gash, T.M. Tillotson, J.H. Satcher Jr., L.W. Hrubesh, R.L. Simpson, J. Non-Cryst. Solids 285, 22–28 (2001)

    Article  CAS  Google Scholar 

  • A.C. Geiculescu, H.J. Rack, J. Non-Cryst. Solids 306, 30–41 (2002)

    Article  CAS  Google Scholar 

  • A. Gharzouni, E. Joussein, B. Samet, S. Baklouti, S. Pronier, I. Sobrados, J. Sanz, S. Rossignol, J. Sol-Gel Sci. Technol. 73, 250–259 (2014)

    Article  CAS  Google Scholar 

  • C. Goebbert, M.A. Aegerter, D. Burgard, R. Nass, H. Schmidt, J. Mater. Chem. 9, 253–258 (1999)

    Article  CAS  Google Scholar 

  • N. Goudarzi, Appl. Magn. Reson. 44, 469–478 (2013)

    Article  CAS  Google Scholar 

  • V.V. Grigor’eva, I.V. Golubeva, Niobium(V) citrato-complexes. Russ. J. Inorg. Chem. 20, 526–529 (1975)

    Google Scholar 

  • C.J. Hardy, Infra-Red Spectra of Thoria Gels, in Sol-Gel Processes for Ceramic Nuclear Fuels, Proceedings of a Panel on Sol-Gel Processes for Nuclear Fuels, Vienna, Panel Proceedings Series, (IAEA, Vienna, 1968), pp. 71–77

    Google Scholar 

  • W.R. Harris, A.E. Martell, Aqueous complexes of gallium(III). Inorg. Chem. 15, 713–720 (1976)

    Article  CAS  Google Scholar 

  • M. Henry, J.-P. Jolivet, J. Livage, Struct. Bond. 77, 153–206 (1990)

    Article  Google Scholar 

  • W. Hu, M. Li, W. Chen, N. Zhang, B. Li, M. Wang, Z. Ahao, Colloids Surf. A 501, 83–91 (2016)

    Article  CAS  Google Scholar 

  • J.F. Hund, M.F. Bertino, G. Zhang, C. Sotiriou-Leventis, N. Leventis, J. Non-Cryst. Solids 350, 9–13 (2004)

    Article  CAS  Google Scholar 

  • G.A. Hutchins, G.H. Maher, S.D. Ross, Am. Ceram. Soc. Bull. 66, 681–684 (1987)

    CAS  Google Scholar 

  • R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley-Interscience, New York, 1979)

    Google Scholar 

  • J.P. Jolivet, M. Henry, J. Livage, De la solution à l’oxyde (Inter Editions/CNRS Editions, Paris, 1994)

    Google Scholar 

  • W.L. Jorgensen, L. Salem, The Organic Chemistry Book of Orbitals (Academic Press, New York, 1973)

    Google Scholar 

  • A. Julbe, C. Guizard, A. Larbot, L. Cot, A. Giroir-Fendler, J. Membr. Sci. 77, 137–153 (1993)

    Article  CAS  Google Scholar 

  • M. Kakihana, M. Arima, Y. Nakamura, M. Yashima, M. Yoshimura, Chem. Mater. 11, 438–450 (1999)

    Article  CAS  Google Scholar 

  • M. Kakihana, M. Tada, M. Shiro, V. Petrykin, M. Osada, Y. Nakamura, Inorg. Chem. 40, 891–894 (2001)

    Article  CAS  Google Scholar 

  • M. Kakihana, K. Tomita, V. Petrykin, M. Tada, S. Sasaki, Y. Nakamura, Inorg. Chem. 43, 4546–4548 (2004)

    Article  CAS  Google Scholar 

  • T. Kanbara, M. Nagasaki, T. Yamamoto, Chem. Mater. 2, 643–645 (1990)

    Article  CAS  Google Scholar 

  • J.F. Keggin, Nature 131, 908–909 (1933)

    Article  CAS  Google Scholar 

  • M. Kim, M. Kobayashi, H. Kato, M. Kakihana, J. Mater. Chem. C 1, 5741–5746 (2013)

    Article  CAS  Google Scholar 

  • C.H. Kim, S.M. Park, J.K. Park, H.D. Park, K.S. Sohn, J.T. Park, J. Electrochem. Soc. 149, H183–H187 (2002)

    Article  CAS  Google Scholar 

  • S.S. Kistler, J. Phys. Chem. 36, 52–64 (1932)

    Article  CAS  Google Scholar 

  • M. Kobayashi, H. Kato, M. Kakihana, Chapter 7.3: Water–Dispersed Silicates and Water–Soluble Phosphates, and Their Use in Sol–Gel Synthesis of Silicate- and Phosphate-Based Materials, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu, (Springer, New York, 2016)

    Google Scholar 

  • N. Kuthirummal, A. Dean, C. Yao, W. Risen, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 70A, 700–703 (2008)

    Article  CAS  Google Scholar 

  • J.J. Lagowski, in The Chemistry of Non-Aqueous Systems, vol. 1–4 (Academic Press, New York, 1965, 1967, 1970, 1976)

    Google Scholar 

  • C.J. Lee, G.S. Kim, S.H. Hyun, J. Mater. Sci. 37, 2237–2241 (2002)

    Article  CAS  Google Scholar 

  • T. Li, T. Wang, Mater. Chem. Phys. 112, 398–401 (2008)

    Article  CAS  Google Scholar 

  • J. Livage, M. Chatry, M. Henry, F. Taulelle, Mater. Res. Soc. Symp. Proc. 271, 201–212 (1992)

    Article  CAS  Google Scholar 

  • J. Livage, M. Henry, J.P. Jolivet, C. Sanchez, Mater. Res. Soc. Bull. 15, 18–25 (1990)

    Article  CAS  Google Scholar 

  • J. Livage, M. Henry, C. Sanchez, Prog. Solid State Chem. 18, 259–341 (1988)

    Article  CAS  Google Scholar 

  • S. Lucas, M.T. Tognonvi, J.-L. Gelet, J. Soro, S. Rossignol, J. Non-Cryst. Solids 357, 1310–1318 (2011)

    Article  CAS  Google Scholar 

  • G.J. MacCarthy, R. Roy, J. Am. Ceram. Soc. 54, 639–640 (1971)

    Article  Google Scholar 

  • M. Magini, J. Inorg. Nucl. Chem. 39, 409–412 (1977)

    Article  CAS  Google Scholar 

  • W.J. Malfait, W.E. Halter, Y. Morizet, B.H. Meier, R. Verel, Geochim. Cosmochim. Acta 71, 6002–6018 (2007)

    Article  CAS  Google Scholar 

  • C. Mao, L. Zhou, X. Wu, X. Sun, Supercond. Sci. Technol. 9, 994–1000 (1996)

    Article  CAS  Google Scholar 

  • C. Marcilly, P. Courty, B. Delmon, J. Am. Ceram. Soc. 53, 56–57 (1970)

    Article  CAS  Google Scholar 

  • E. Matijevic, Monodispersed Colloidal Metal Oxides, Sulfides, and Phosphates, in Ultrastructure Processing of Ceramics, Classes, and Composites, ed. by L. L. Hench, D. R. Ulrich, (Wiley, New York, 1984), pp. 334–352

    Google Scholar 

  • E. Matijevic, Am. Rev. Mater. Sci. 15, 483–516 (1985)

    Article  CAS  Google Scholar 

  • J. McMurry, Organic Chemistry, 4th edn. (Brooks/Cole, International Thomson Publishing Company, New York, 1995)

    Google Scholar 

  • D. Mondelaers, G. Vanhoyland, H. Van den Rul, J. D’Haen, M.K. Van Bael, J. Mullens, L.C. Van Poucke, Mater. Res. Bull. 37, 901–914 (2002)

    Article  CAS  Google Scholar 

  • Y. Narendar, G.L. Messing, Chem. Mater. 9, 580–587 (1997)

    Article  CAS  Google Scholar 

  • L.F. Nazar, L.C. Klein, J. Am. Ceram. Soc. 71, C85 (1988)

    Article  CAS  Google Scholar 

  • L.F. Nazar, L.C. Klein, D. Napier, Mater. Res. Soc. Symp. Proc. 121, 133–138 (1988)

    Article  CAS  Google Scholar 

  • N. Nazriati, H. Setyawan, S. Affandi, M. Yuwana, S. Winardi, J. Non-Cryst. Solids 400, 6–11 (2014)

    Article  CAS  Google Scholar 

  • Y. Ohya, Chapter 1-10: Aqueous Precursors, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu, (Springer, New York, 2016)

    Google Scholar 

  • R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68, 3801–3807 (1978)

    Article  CAS  Google Scholar 

  • M.P. Pechini, Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, U.S. Patent 3,330,697 (1967)

    Google Scholar 

  • L.A. Perez-Maqueda, L. Wang, E. Matijevic, Lang. Des. 14, 4397–4401 (1998)

    Article  CAS  Google Scholar 

  • V. Petrykin, M. Kakihana, Chapter 2.4: Chemistry and Applications of Polymeric Gel Precursors, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu, (Springer, New York, 2016)

    Google Scholar 

  • J. Pretula, K. Kaluzynski, B. Wisniewski, R. Szymanski, T. Loontjens, S. Penczek, J. Polym. Sci. Part A: Polym. Chem. 46, 830–843 (2008)

    Article  CAS  Google Scholar 

  • C.N.R. Rao, J. Gopalakrishnan, K. Vidyasagar, A.K. Ganguli, J. Mater. Res. 1, 280–294 (1986)

    Article  CAS  Google Scholar 

  • H.M. Reichenbach, P.J. McGinn, J. Mater. Res. 16, 967–974 (2001)

    Article  CAS  Google Scholar 

  • A.V. Rosario, E.C. Pereira, Sol. Energy Mater. Sol. Cells 71, 41–50 (2002)

    Article  CAS  Google Scholar 

  • R.T. Sanderson, Chemical Bonds and Bond Energy (Academic Press, New York, 1971), p. 218

    Google Scholar 

  • E. Santacesaria, M. Tonello, G. Storti, R.C. Pace, S. Carra, J. Colloid Interface Sci. 111, 44–53 (1986)

    Article  CAS  Google Scholar 

  • Y. Sato, K. Yoshioka, V.V. Petrykin, M. Kakihana, Y. Tanaka, A. Yamaguchi, T. Katsumata, H. Yasuoka, Physica C 378, 160–166 (2002)

    Article  Google Scholar 

  • H. Schmidt, A. Kaiser, M. Rudolph, A. Lentz, Contribution to the Kinetics of Glass Formation from Solutions, in Science of Ceramic Chemical Processing, ed. by L. L. Hench, D. R. Ulrich, (Wiley, New York, 1986), pp. 87–93

    Google Scholar 

  • W. Schneider, Comment Inorg. Chem. 3, 205–223 (1984)

    Article  CAS  Google Scholar 

  • D.L. Segal, The Preparation of Magnetite from Iron III, Report AERE-R 9976 (1980), p. 25

    Google Scholar 

  • D.L. Segal, J. Non-Cryst. Solids 63, 183–191 (1984)

    Article  CAS  Google Scholar 

  • F. Shi, J.X. Liu, K. Song, Z.Y. Wang, J. Non-Cryst. Solids 356, 2241–2246 (2010)

    Article  CAS  Google Scholar 

  • D.F. Shriver, P. Atkins, C.H. Langford, Inorganic Chemistry, 2nd edn. (Freeman, New York, 1994)

    Google Scholar 

  • E.E. Sileo, R. Rotelo, S.E. Jacobo, Physica B 320, 257–260 (2002)

    Article  CAS  Google Scholar 

  • S.S. Singh, Can. J. Soil Sci. 62, 559–569 (1982)

    Article  CAS  Google Scholar 

  • P. Steins, Influence des paramètres de formulation sur la texturation et la structuration des géopolymères, Ph.D. Thesis, University of Limoges (2014)

    Google Scholar 

  • F.H. Stillinger, Science 209(4455), 451–457 (1980)

    Article  CAS  Google Scholar 

  • H. Stuenzi, W. Marty, Inorg. Chem. 22, 2145–2150 (1983)

    Article  CAS  Google Scholar 

  • R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 82, 865–870 (1997)

    Article  Google Scholar 

  • M.R. Talaghat, F. Esmaeilzadeh, D. Mowla, J. Pet. Sci. Eng. 67, 34–40 (2009)

    Article  CAS  Google Scholar 

  • Q. Tang, T. Wang, J. Supercrit. Fluids 35, 91–94 (2005)

    Article  CAS  Google Scholar 

  • A.J. Terezo, E.C. Pereira, Electrochim. Acta 45, 4351–4358 (2000)

    Article  CAS  Google Scholar 

  • M.T. Tognonvi, D. Massiot, A. Lecomte, S. Rossignol, J.-P. Bonnet, J. Colloid Interface Sci. 352, 309–315 (2010)

    Article  CAS  Google Scholar 

  • K. Van Werde, G. Vanhoyland, D. Nelis, D. Mondelaers, M.K. Van Bael, J. Mullens, L.C. Van Poucke, J. Mater. Chem. 11, 1192–1197 (2001)

    Article  Google Scholar 

  • A.C. Vermeulen, J.W. Geus, R.J. Stol, P.L. Debruyn, J. Colloid Interface Sci. 51, 449–458 (1975)

    Article  CAS  Google Scholar 

  • L. Vidal, L.A. Gharzouni, S. Rossignol, Chapter 1-5: Alkaline Silicate Solutions: An Overview of Their Structure, Reactivity, and Application, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu, (Springer, New York, 2016)

    Google Scholar 

  • G. Vivier. Relations entre la microstructure des blocs agglomérés et les propriétés électriques des fusibles, Ph.D. Thesis. Institut National des Sciences Appliquées de Lyon (2010)

    Google Scholar 

  • W. Weng, J. Huang, G. Han, Appl. Organomet. Chem. 13, 555–564 (1999)

    Article  CAS  Google Scholar 

  • K.V. Werde, D. Mondelaers, G. Vanhoyland, D. Nelis, M.K. Van Bael, J. Mullens, L.C. Van Poucke, B. Van der Veken, H.O. Desseyn, J. Mater. Sci. 37, 81–88 (2002)

    Article  Google Scholar 

  • D.L. West, D.A. Payne, J. Am. Ceram. Soc. 86, 192–194 (2003)

    Article  CAS  Google Scholar 

  • J.L. Woodhead, Cerium Oxide Iron Cerium Hydroxide, British Patent 1,342,893, deposited on (10 Feb 1970), German Patent 2,105,912 (26 Aug 1971)

    Google Scholar 

  • X.-D. Xiang, X. Sun, G. Briceno, Y. Lou, K.-A. Wang, H. Chang, W.G. Wallace-Freedman, S.W. Chen, P.G. Schultz, Science 268, 1738–1740 (1995)

    Article  CAS  Google Scholar 

  • S. Yamabi, H. Imai, Chem. Mater. 14, 609–614 (2002)

    Article  CAS  Google Scholar 

  • S.Y. You, J.T. Shy, C.M. Wang, H.-C.I. Kao, Supercond. Sci. Technol. 11, 800–802 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pierre, A.C. (2020). The Sol-Gel Chemistry of Oxides from Metal Salts. In: Introduction to Sol-Gel Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-38144-8_2

Download citation

Publish with us

Policies and ethics