Skip to main content

Abstract

In previous chapters, a differing point of initiation for evolutionary development has been introduced through concepts of information management and cell–cell communication. It has been emphasized that evolution proceeds quite differently than it had been supposed. Instead of random genetic variations based on intermittent replication errors, evolution can now be understood as a continuous self-referential process of self-modification in response to environmental stresses through natural cellular engineering and niche construction. Yet, to further comprehend how the modern synthesis must be altered, an accurate perception of the endpoint of all evolutionary processes must be explained. It is now known that all multicellular macro-organisms are holobionts. Taking ourselves as an example, it is currently estimated that there are many trillions of microbes—bacteria, viruses, fungi, and others—that are in us and on us (Sender et al. 2016). They outnumber our eukaryotic cells by a factor estimated by some to be up to 10 to 1 or more (Turnbaugh et al. 2007). When the total genetic complement of this microbial fraction is considered, the full genetic cohort of the associated microbiome outnumbers our innate genetic complement by perhaps as much as 100 to 1 (Bäckhed et al. 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfano M, Ferrarese R, Locatelli I, Ventimiglia E, Ippolito S, Gallina P, Cesana D, Canducci F, Pagliardini L, Viganò P, Clementi M (2018) Testicular microbiome in azoospermic men—first evidence of the impact of an altered microenvironment. Hum Reprod 2018 33(7):1212–7

    Google Scholar 

  • Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  CAS  PubMed  Google Scholar 

  • Baluška F, Miller WB Jr (2018) Senomic view of the cell: senome versus genome. Commun Integr Biol 11(3):1–9

    PubMed  PubMed Central  Google Scholar 

  • Bohm DJ, Hiley BJ (1975) On the intuitive understanding of nonlocality as implied by quantum theory. Found Phys 5:93–109

    Article  Google Scholar 

  • Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB (2008) Decreased diversity of the fecal microbiome in recurrent Clostridium difficile—associated diarrhea. J Infect Dis 197:435–438

    Article  PubMed  Google Scholar 

  • Chiu L, Gilbert SF (2015) The birth of the holobiont: multi-species birthing through mutual scaffolding and niche construction. Exp Cell Res 8:191–210

    Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christakis NA, Fowler JH (2013) Social contagion theory: examining dynamic social networks and human behavior. Stat Med 32:556–577

    Article  PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712

    Article  CAS  PubMed  Google Scholar 

  • Dennis AR, Valacich JS (1999) Rethinking media richness: towards a theory of media synchronicity. In: Proceedings of the 32nd annual Hawaii international conference on systems sciences. IEEE Systems Sciences, Los Alamitos

    Google Scholar 

  • Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD (2012) Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 3:203–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547

    Article  CAS  PubMed  Google Scholar 

  • Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11:e1001631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson KE, White O, Methé BA, Huttenhower C (2015) The human microbiome project: a community resource for the healthy human microbiome. PLoS Biol 10:e1001377

    Article  CAS  Google Scholar 

  • Gilbert SF (2014) Symbiosis as the way of eukaryotic life: the dependent co-origination of the body. J Biosci 39:201–209

    Article  PubMed  Google Scholar 

  • Gilbert SF, McDonald E, Boyle N, Buttino N, Gyi L, Mai M, Prakash N, Robinson J (2010) Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy. Philos Trans R Soc Lond Ser B Biol Sci 365:671–678

    Article  Google Scholar 

  • Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87:325–341

    Article  PubMed  Google Scholar 

  • Gordon J, Knowlton N, Relman DA, Rohwer F, Youle M (2013) Superorganisms and holobionts. Microbe 8:152–153

    Google Scholar 

  • Gunji YP, Sonoda K, Basios V (2016) Quantum cognition based on an ambiguous representation derived from a rough set approximation. Biosystems 141:55–66

    Article  PubMed  Google Scholar 

  • Hall WP (2005) Biological nature of knowledge in the learning organisation. Learn Organ: Intern J 12:169–188

    Article  Google Scholar 

  • Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Petterson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052

    Article  PubMed Central  Google Scholar 

  • Hoffmann AR, Proctor LM, Surette MG, Suchodolski JS (2015) The microbiome the trillions of microorganisms that maintain health and cause disease in humans and companion animals. Vet Path 53:10–21

    Article  CAS  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, Rodríguez JM (2008) Is meconium from healthy newborns actually sterile? Res Microbiol 159:187–193

    Article  CAS  PubMed  Google Scholar 

  • Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A, Maier B (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci 106:21407–21412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiessling S, Dubeau-Laramée G, Ohm H, Labrecque N, Olivier M, Cermakian N (2017) The circadian clock in immune cells controls the magnitude of Leishmania parasite infection. Sci Rep 7:10892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108:4578–4585

    Article  PubMed  Google Scholar 

  • Koleva PT, Kim JS, Scott JA, Kozyrskyj AL (2015) Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today 105:265–277

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling Z, Kong J, Jia P, Wei C, Wang Y, Pan Z, Huang W, Li L, Chen H, Xiang C (2010) Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol 60:677–690

    Article  CAS  PubMed  Google Scholar 

  • Łukasik P, van Asch M, Guo H, Ferrari J, Godfray CJ (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218

    Article  PubMed  Google Scholar 

  • McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci 110:3229–3236

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller WB (2013) The microcosm within: evolution and extinction in the hologenome. Universal Publishers, Boca Raton

    Google Scholar 

  • Miller WB (2016a) Cognition, information fields and hologenomic entanglement: evolution in light and shadow. Biology (Basel) 5(2):21

    CAS  Google Scholar 

  • Miller WB (2016b) The eukaryotic microbiome: origins and implications for fetal and neonatal life. Front Pediatr 4:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller WB (2017) Biological information systems: evolution as cognition-based information management. Prog Biophys Mol Biol 134:1–36

    Article  PubMed  Google Scholar 

  • Miller WB Jr, Torday JS (2018) Four domains: the fundamental unicell and Post-Darwinian cognition-based evolution. Prog Biophys Mol Biol 140:49–73

    Article  PubMed  Google Scholar 

  • Miller WB, Torday JS, Baluska F (2018) Biological evolution as the defense of self. Prog Biophys Mol Biol 142:54–74

    PubMed  Google Scholar 

  • Moeller AH, Li Y, Ngole EM, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, Peeters M, Hahn BH, Ochman H (2014) Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci U S A 111:16431–16435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon C, Baldridge MT, Wallace MA, Burnham C-AD, Virgin HW, Stappenbeck TS (2015) Vertically transmissible fecal IgA levels distinguish extra-chromosomal phenotypic variation. Nature 521:90–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moya A, Peretó J, Gil R, Latorre A (2008) Learning how to live together: genomic insights into prokaryote—animal symbioses. Nat Rev Genet 9:218–222

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LD, Viscogliosi E, Delhaes L (2015) The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 6:89

    PubMed  PubMed Central  Google Scholar 

  • Nicholson DJ (2014a) The machine conception of the organism in development and evolution: a critical analysis. Stud Hist Phil Biol Biomed Sci 48:162–174

    Article  Google Scholar 

  • Nicholson DJ (2014b) The return of the organism as a fundamental explanatory concept in biology. Philos Compass 9:347–359

    Article  Google Scholar 

  • Noble D (2015) Evolution beyond Darwinism: a new conceptual framework. J Exp Biol 218:7–13

    PubMed  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saetzler K, Sonnenschein C, Soto AM (2011) Systems biology beyond networks: generating order from disorder through self-organization. Semin Cancer Biol 21:165–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saey TH (2014) Beyond the microbiome: the vast virome: scientists are just beginning to get a handle on the many roles of viruses in the human ecosystem. Sci News 185:18–21

    Article  Google Scholar 

  • Satokari R, Grönroos T, Laitinen K, Salminen S, Isolauri E (2009) Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 48:8–12

    Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121:2126–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tito RY, Macmil S, Wiley G, Najar F, Cleeland L, Qu C, Wang P, Romagne F, Leonard S, Ruiz AJ, Reinhard K, Roe BA, Lewis CM Jr (2008) Phylotyping and functional analysis of two ancient human microbiomes. PLoS One 3:e3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tognini P, Murakami M, Sassone-Corsi P (2018) Interplay between microbes and the circadian clock. Cold Spring Harb Perspect Biol 10:a028365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torday JS, Miller WB Jr (2016b) Biologic relativity: who is the observer and what is observed? Prog Biophys Mol Biol 121:29–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Torday JS, Miller WB Jr (2016c) Life is determined by its environment. Int J Astrobiol 15:345–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-liggett C, Knight R, Gordon JI (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulanowicz RE (2017) Preface: towards a global understanding of development and evolution. Prog Biophys Mol Biol 131:12–14

    Article  PubMed  Google Scholar 

  • Virgin HW (2014) The virome in mammalian physiology and disease. Cell 157:142–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess SM, Brachmann RK, Haussler D (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein. Proc Natl Acad Sci 104:18613–18618

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torday, J., Miller Jr., W. (2020). Holobionts. In: Cellular-Molecular Mechanisms in Epigenetic Evolutionary Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-38133-2_12

Download citation

Publish with us

Policies and ethics