Skip to main content

Biofunctionalized Nanostructured Materials for Sensing of Pesticides

  • Chapter
  • First Online:
Nanosensors for Environmental Applications

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 43))

Abstract

Pesticides constitute to be an integral part of modern agriculture. It has been estimated that approximately 35–45% of crop produce is lost due to infection by different pests, diseases, and growth of weeds. The application of these agrochemicals drastically reduces the effects of pests, weeds, and vector-borne diseases leading to enhanced crop productivity. It has become necessary to use pesticides on crops so as to provide food security to the growing population of the world. However, the indiscriminate utilization of pesticides has led to the persistence of their alarmingly high levels of residues in the environment. The toxicity of these agrochemicals extends largely to nontarget organisms such as humans, birds, and animals. The accurate sensing and efficient removal of these agrochemicals have become crucial due to the presence of their residues in environment and serious health hazards.

Nanoplatforms have drawn a considerable research orientation as alternatives to conventional systems for sensing of pesticide residues. Further, biofunctionalization of nanomaterials with biomolecules provides high specificity to the sensing platforms. The present chapter aims to explore various nanosensors reported till date for the sensing of different pesticides starting with general introduction of pesticides, classification, global scenario, and adverse health effects followed by nanoplatforms that have been investigated for the quantification of pesticides. Next, the nanoplatforms functionalized with specific biomolecules such as whole cells, DNA, antibodies, and enzyme (i.e., biosensors) have been discussed in detail. The chapter tends to highlight the promising properties, advantages, and limitations of the described sensing platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash P, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165(1–3):1–12

    Article  CAS  Google Scholar 

  • About Pesticides (2006) USEPA. Available at: http://www.epa.gov/pesticides/about/types.htm

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  Google Scholar 

  • Al-Degs YS, Al-Ghouti MA, El-Sheikh AH (2009) Simultaneous determination of pesticides at trace levels in water using multiwalled carbon nanotubes as solid-phase extractant and multivariate calibration. J Hazard Mater 169(1–3):128–135

    Article  CAS  Google Scholar 

  • Allendorf M, Bauer C, Bhakta R, Houk R (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38(5):1330–1352

    Article  CAS  Google Scholar 

  • Andreescu S, Njagi J, Ispas C, Ravalli MT (2009) JEM spotlight: applications of advanced nanomaterials for environmental monitoring. J Environ Monit 11(1):27–40

    Article  CAS  Google Scholar 

  • Aragay G, Pino F, Merkoci A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112(10):5317–5338

    Article  CAS  Google Scholar 

  • Arduini F, Amine A (2013) Biosensors based on enzyme inhibition. In: Biosensors based on aptamers and enzymes. Springer, Berlin Heidelberg, pp 299–326

    Chapter  Google Scholar 

  • Arduini F, Neagu D, Scognamiglio V, Patarino S, Moscone D, Palleschi G (2015) Automatable flow system for paraoxon detection with an embedded screen-printed electrode tailored with butyrylcholinesterase and prussian blue nanoparticles. Chemosensors 3(2):129–145

    Article  CAS  Google Scholar 

  • Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183(7):2063–2083

    Article  CAS  Google Scholar 

  • Asensio-Ramos M, Hernández-Borges J, Borges-Miquel T, Rodríguez-Delgado M (2009) Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental and forestal soils. Anal Chim Acta 647(2):167–176

    Article  CAS  Google Scholar 

  • Ashour M, Ramadan R, Ragheb D, Gomaa A, Monrad S (1987) Thiodicarb and Aldicarb residues in potatoes. In: Proceedings of the 2nd national conference on pest diseases of vegetables and fruits, pp 501–513

    Google Scholar 

  • Aslan S, Cakir Z, Emet M, Serinken M, Karcioglu O, Kandis H et al (2011) Acute abdomen associated with organophosphate poisoning. J Emerg Med 41(5):507–512

    Article  Google Scholar 

  • Assen AH, Yassine O, Shekhah O, Eddaoudi M, Salama KN (2017) MOFs for the sensitive detection of ammonia: deployment of fcu-MOF thin films as effective chemical capacitive sensors. ACS Sensors 2(9):1294–1301

    Article  CAS  Google Scholar 

  • Ayyagari MS, Kamtekar S, Pande R, Marx KA, Kumar J, Tripathy SK et al (1995) Biosensors for pesticide detection based on alkaline phosphatase-catalyzed chemiluminescence. Mater Sci Eng C 2(4):191–196

    Article  Google Scholar 

  • Bakar N, Salleh MM, Umar A, Yahaya M (2011) The detection of pesticides in water using ZnCdSe quantum dot films. Adv Nat Sci Nanosci Nanotechnol 2(2):025011

    Article  CAS  Google Scholar 

  • Baker S (1990) The effect of pesticides on human health. In: Advances in modern environmental toxicology. Scientific Publishing, Princeton

    Google Scholar 

  • Bala R, Sharma RK, Wangoo N (2016) Development of gold nanoparticles-based aptasensor for the colorimetric detection of organophosphorus pesticide phorate. Anal Bioanal Chem 408(1):333–338

    Article  CAS  Google Scholar 

  • Bala R, Dhingra S, Kumar M, Bansal K, Mittal S, Sharma RK et al (2017) Detection of organophosphorus pesticide–Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem Eng J 311:111–116

    Article  CAS  Google Scholar 

  • Bao J, Hou C, Chen M, Li J, Huo D, Yang M et al (2015) Plant esterase–chitosan/gold nanoparticles–graphene nanosheet composite-based biosensor for the ultrasensitive detection of organophosphate pesticides. J Agric Food Chem 63(47):10319–10326

    Article  CAS  Google Scholar 

  • Bao J, Hou C, Dong Q, Ma X, Chen J, Huo D et al (2016) ELP-OPH/BSA/TiO2 nanofibers/c- MWCNTs based biosensor for sensitive and selective determination of p-nitrophenyl substituted organophosphate pesticides in aqueous system. Biosens Bioelectron 85:935–942

    Article  CAS  Google Scholar 

  • Baseline Study on the Problem of Obsolete Pesticides Stocks (2001) FAO/UNEP. Rome

    Google Scholar 

  • Bertazzi PA, Bernucci I, Brambilla G, Consonni D, Pesatori AC (1998) The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ Health Perspect 106(Suppl 2):625–633

    Article  CAS  Google Scholar 

  • Bhardwaj SK, Bhardwaj N, Mohanta GC, Kumar P, Sharma AL, Kim K-H et al (2015) Immunosensing of atrazine with antibody-functionalized Cu-MOF conducting thin films. ACS Appl Mater Interfaces 7(47):26124–26130

    Article  CAS  Google Scholar 

  • Bhatnagar V (2001) Pesticides pollution: trends and perspectives. ICMR Bull 31(9):87–88

    Google Scholar 

  • Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N et al (2011) Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect 119(8):1189–1195

    Article  CAS  Google Scholar 

  • Calvert GM, Mehler LN, Alsop J, De Vries AL, Besbelli N (2010) Surveillance of pesticide- related illness and injury in humans. In: Hayes’ handbook of pesticide toxicology. Elsevier, Amsterdam, pp 1313–1369

    Chapter  Google Scholar 

  • Carrillo-Carrión C, Simonet BM, Valcárcel M, Lendl B (2012) Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots “sponge” nanocomposite. J Chromatogr A 1225:55–61

    Article  CAS  Google Scholar 

  • Cesarino I, Moraes FC, Lanza MR, Machado SA (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem 135(3):873–879

    Article  CAS  Google Scholar 

  • Chauhan R, Singhal L (2006) Harmful effects of pesticides and their control through cowpathy. Int J Cow Sci 2(1):61–70

    Google Scholar 

  • Chen J, Zou J, Zeng J, Song X, Ji J, Wang Y et al (2010a) Preparation and evaluation of graphene- coated solid-phase microextraction fiber. Anal Chim Acta 678(1):44–49

    Article  CAS  Google Scholar 

  • Chen L, Zeng G, Zhang Y, Tang L, Huang D, Liu C et al (2010b) Trace detection of picloram using an electrochemical immunosensor based on three-dimensional gold nanoclusters. Anal Biochem 407(2):172–179

    Article  CAS  Google Scholar 

  • Chen Y, Ren H l, Liu N, Sai N, Liu X, Liu Z et al (2010c) A fluoroimmunoassay based on quantum dot− streptavidin conjugate for the detection of chlorpyrifos. J Agric Food Chem 58(16):8895–8903

    Article  CAS  Google Scholar 

  • Chouteau C, Dzyadevych S, Durrieu C, Chovelon J-M (2005) A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens Bioelectron 21(2):273–281

    Article  CAS  Google Scholar 

  • CODEX Alimentarius (2011). http://www.codexalimentarius.net/web/index_en.js

  • Constantine CA, Gattás-Asfura KM, Mello SV, Crespo G, Rastogi V, Cheng T-C et al (2003a) Layer-by-layer biosensor assembly incorporating functionalized quantum dots. Langmuir 19(23):9863–9867

    Article  CAS  Google Scholar 

  • Constantine CA, Gattás-Asfura KM, Mello SV, Crespo G, Rastogi V, Cheng T-C et al (2003b) Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon. J Phys Chem B 107(50):13762–13764

    Article  CAS  Google Scholar 

  • Cortés JM, Sanchez R, Díaz-Plaza EM, Villén J, Vázquez A (2006) Large volume GC injection for the analysis of organophosphorus pesticides in vegetables using the through oven transfer adsorption desorption (TOTAD) interface. J Agric Food Chem 54(6):1997–2002

    Article  CAS  Google Scholar 

  • Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006) The use of luminescent quantum dots for optical sensing. TrAC Trends Anal Chem 25(3):207–218

    Article  CAS  Google Scholar 

  • Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem 9(10):2525–2531

    Article  CAS  Google Scholar 

  • Cui Y, Yue Y, Qian G, Chen B (2011) Luminescent functional metal–organic frameworks. Chem Rev 112(2):1126–1162

    Article  CAS  Google Scholar 

  • Current pesticide spectrum, global use and major concerns (2003) U. Pan

    Google Scholar 

  • Deep A, Bhardwaj SK, Paul A, Kim K-H, Kumar P (2015) Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosens Bioelectron 65:226–231

    Article  CAS  Google Scholar 

  • Del Carlo M, Lionti I, Taccini M, Cagnini A, Mascini M (1997) Disposable screen-printed electrodes for the immunochemical detection of polychlorinated biphenyls. Anal Chim Acta 342(2–3):189–197

    Article  Google Scholar 

  • Deo RP, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M et al (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530(2):185–189

    Article  CAS  Google Scholar 

  • Do MH, Florea A, Farre C, Bonhomme A, Bessueille F, Vocanson F et al (2015) Molecularly imprinted polymer-based electrochemical sensor for the sensitive detection of glyphosate herbicide. Int J Environ Anal Chem 95(15):1489–1501

    Article  CAS  Google Scholar 

  • Du D, Chen S, Song D, Li H, Chen X (2008) Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens Bioelectron 24(3):475–479

    Article  CAS  Google Scholar 

  • Du D, Chen W, Zhang W, Liu D, Li H, Lin Y (2010) Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion. Biosens Bioelectron 25(6):1370–1375

    Article  CAS  Google Scholar 

  • Du D, Liu J, Zhang X, Cui X, Lin Y (2011) One-step electrochemical deposition of a graphene-ZrO 2 nanocomposite: preparation, characterization and application for detection of organophosphorus agents. J Mater Chem 21(22):8032–8037

    Article  CAS  Google Scholar 

  • Dubas ST, Pimpan V (2008) Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62(17–18):2661–2663

    Article  CAS  Google Scholar 

  • Durrieu C, Tran-Minh C (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51(3):206–209

    Article  CAS  Google Scholar 

  • Emory SR, Haskins WE, Nie S (1998) Direct observation of size-dependent optical enhancement in single metal nanoparticles. J Am Chem Soc 120(31):8009–8010

    Article  CAS  Google Scholar 

  • Facure MH, Mercante LA, Mattoso LH, Correa DS (2017) Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta 167:59–66

    Article  CAS  Google Scholar 

  • Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18

    Article  CAS  Google Scholar 

  • Fan Y, Liu L, Sun D, Lan H, Fu H, Yang T et al (2016) “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides. Anal Chim Acta 916:84–91

    Article  CAS  Google Scholar 

  • Fei A, Liu Q, Huan J, Qian J, Dong X, Qiu B et al (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129

    Article  CAS  Google Scholar 

  • Fishel F (2013) The EPA conventional reduced risk pesticide program. University of Florida Institute of Food and Agricultural Sciences, Gainesville

    Google Scholar 

  • Frederix F, Friedt J-M, Choi K-H, Laureyn W, Campitelli A, Mondelaers D et al (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75(24):6894–6900

    Article  CAS  Google Scholar 

  • Frumkin H (2003) Agent orange and cancer: an overview for clinicians. CA Cancer J Clin 53(4):245–255

    Article  Google Scholar 

  • Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87:245–254

    Article  CAS  Google Scholar 

  • Funderburk H, Kearney P, Kaufman D (1969) Diquat and paraquat. In: Degradation of herbicides. Marcel Dekker, New York, pp 283–298

    Google Scholar 

  • Gäberlein S, Spener F, Zaborosch C (2000) Microbial and cytoplasmic membrane-based potentiometric biosensors for direct determination of organophosphorus insecticides. Appl Microbiol Biotechnol 54(5):652–658

    Article  Google Scholar 

  • Gao L, Ju L, Cui H (2017) Chemiluminescent and fluorescent dual-signal graphene quantum dots and their application in pesticide sensing arrays. J Mater Chem C 5(31):7753–7758

    Article  CAS  Google Scholar 

  • Garry VF, Schreinemachers D, Harkins ME, Griffith J (1996) Pesticide appliers, biocides, and birth defects in rural Minnesota. Environ Health Perspect 104(4):394–399

    Article  CAS  Google Scholar 

  • Gassensmith JJ, Kim JY, Holcroft JM, Farha OK, Stoddart JF, Hupp JT et al (2014) A metal–organic framework-based material for electrochemical sensing of carbon dioxide. J Am Chem Soc 136(23):8277–8282

    Article  CAS  Google Scholar 

  • Gebara A, Ciscato C, Ferreira SM, Monteiro S (2005) Pesticide residues in vegetables and fruits monitored in Sao Paulo city, Brazil, 1994–2001. Bull Environ Contam Toxicol 75(1):163–169

    Article  CAS  Google Scholar 

  • Ghodsi J, Rafati AA (2017) A voltammetric sensor for diazinon pesticide based on electrode modified with TiO2 nanoparticles covered multi walled carbon nanotube nanocomposite. J Electroanal Chem 807:1–9

    Article  CAS  Google Scholar 

  • Goel A, Aggarwal P (2007) Pesticide poisoning. Natl Med J India 20(4):182

    Google Scholar 

  • Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HT et al (2005) A hybrid quantum dot− antibody fragment fluorescence resonance energy transfer-based TNT sensor. J Am Chem Soc 127(18):6744–6751

    Article  CAS  Google Scholar 

  • Gong J, Miao X, Zhou T, Zhang L (2011) An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta 85(3):1344–1349

    Article  CAS  Google Scholar 

  • Grennan K, Strachan G, Porter AJ, Killard AJ, Smyth MR (2003) Atrazine analysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi- calibrant measurement. Anal Chim Acta 500(1–2):287–298

    Article  CAS  Google Scholar 

  • Guan G, Yang L, Mei Q, Zhang K, Zhang Z, Han M-Y (2012) Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides. Anal Chem 84(21):9492–9497

    Article  CAS  Google Scholar 

  • Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598(2):181–192

    Article  CAS  Google Scholar 

  • Guo Y-R, Liu S-Y, Gui W-J, Zhu G-N (2009) Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal Biochem 389(1):32–39

    Article  CAS  Google Scholar 

  • Guo J, Zhang Y, Luo Y, Shen F, Sun C (2014) Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate. Talanta 125:385–392

    Article  CAS  Google Scholar 

  • Guo P, Sikdar D, Huang X, Si KJ, Xiong W, Gong S et al (2015) Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size-and shape-dependent Raman enhancement. Nanoscale 7(7):2862–2868

    Article  CAS  Google Scholar 

  • Haddaoui M, Raouafi N (2015) Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/SPCE biosensor for the detection of ppb levels of herbicide. Sensors Actuators B Chem 219:171–178

    Article  CAS  Google Scholar 

  • Hart K, Pimentel D (2002) Public health and costs of pesticides. In: Encyclopedia of pest management. Marcel Dekker, New York, pp 677–679

    Google Scholar 

  • He Y, Xu B, Li W, Yu H (2015) Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J Agric Food Chem 63(11):2930–2934

    Article  CAS  Google Scholar 

  • Hernández F, Pozo O, Sancho J, Bijlsma L, Barreda M, Pitarch E (2006) Multiresidue liquid chromatography tandem mass spectrometry determination of 52 non gas chromatography-amenable pesticides and metabolites in different food commodities. J Chromatogr A 1109(2):242–252

    Article  CAS  Google Scholar 

  • Hogendoorn E, Van Zoonen P (2000) Recent and future developments of liquid chromatography in pesticide trace analysis. J Chromatogr A 892(1–2):435–453

    Article  CAS  Google Scholar 

  • Horrigan L, Lawrence RS, Walker P (2002) How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ Health Perspect 110(5):445–456

    Article  Google Scholar 

  • Hosseini H, Ahmar H, Dehghani A, Bagheri A, Fakhari AR, Amini MM (2013) Au-SH-SiO2 nanoparticles supported on metal-organic framework (Au-SH-SiO2@ Cu-MOF) as a sensor for electrocatalytic oxidation and determination of hydrazine. Electrochim Acta 88:301–309

    Article  CAS  Google Scholar 

  • Huang X, Liu J, Shao D, Pi Z, Yu Z (2003) Rectangular mode of operation for detecting pesticide residue by using a single SnO2-based gas sensor. Sensors Actuators B Chem 96(3):630–635

    Article  CAS  Google Scholar 

  • Huo D, Li Q, Zhang Y, Hou C, Lei Y (2014) A highly efficient organophosphorus pesticides sensor based on CuO nanowires–SWCNTs hybrid nanocomposite. Sensors Actuators B Chem 199:410–417

    Article  CAS  Google Scholar 

  • Ikeda A, Shinkai S (1997) Novel cavity design using calix [n] arene skeletons: toward molecular recognition and metal binding. Chem Rev 97(5):1713–1734

    Article  CAS  Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100

    Article  CAS  Google Scholar 

  • Ji X, Zheng J, Xu J, Rastogi VK, Cheng T-C, DeFrank JJ et al (2005) (CdSe) ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J Phys Chem B 109(9):3793–3799

    Article  CAS  Google Scholar 

  • Jia M, Zhang Z, Li J, Shao H, Chen L, Yang X (2017) A molecular imprinting fluorescence sensor based on quantum dots and a mesoporous structure for selective and sensitive detection of 2, 4- dichlorophenoxyacetic acid. Sensors Actuators B Chem 252:934–943

    Article  CAS  Google Scholar 

  • Jin D, Xu Q, Yu L, Hu X (2015) Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125 (Ti)/TiO 2. Microchim Acta 182(11–12):1885–1892

    Article  CAS  Google Scholar 

  • Kariuki NN, Luo J, Hassan SA, Lim I-IS, Wang L, Zhong CJ (2006) Assembly of bimetallic gold− silver nanoparticles via selective interparticle dicarboxylate− silver linkages. Chem Mater 18(1):123–132

    Article  CAS  Google Scholar 

  • Kempahanumakkagari S, Kumar V, Samaddar P, Kumar P, Ramakrishnappa T, Kim K-H (2018) Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol Adv 36(2):467–481

    Article  CAS  Google Scholar 

  • Khairy M, Ayoub HA, Banks CE (2018) Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem 255:104–111

    Article  CAS  Google Scholar 

  • Kintzios SE (2007) Cell-based biosensors in clinical chemistry. Mini-Rev Med Chem 7(10):1019–1026

    Article  CAS  Google Scholar 

  • Konishi K, Hiratani T (2006) Turn-on and selective luminescence sensing of copper ions by a water-soluble Cd10S16 molecular cluster. Angew Chem Int Ed 45(31):5191–5194

    Article  CAS  Google Scholar 

  • Kubackova J, Fabriciova G, Miskovsky P, Jancura D, Sanchez-Cortes S (2014) Sensitive surface- enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol- functionalized metal nanoparticles-induced plasmonic hot spots. Anal Chem 87(1):663–669

    Article  CAS  Google Scholar 

  • Kumar J, Jha SK, D’Souza S (2006) Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens Bioelectron 21(11):2100–2105

    Article  CAS  Google Scholar 

  • Kumar P, Paul A, Deep A (2014a) A luminescent nanocrystal metal organic framework for chemosensing of nitro group containing organophosphate pesticides. Anal Methods 6(12):4095–4101

    Article  CAS  Google Scholar 

  • Kumar P, Paul A, Deep A (2014b) Sensitive chemosensing of nitro group containing organophosphate pesticides with MOF-5. Microporous Mesoporous Mater 195:60–66

    Article  CAS  Google Scholar 

  • Kuppler RJ, Timmons DJ, Fang Q-R, Li J-R, Makal TA, Young MD et al (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253(23–24):3042–3066

    Article  CAS  Google Scholar 

  • Lan M, Guo Y, Zhao Y, Liu Y, Gui W, Zhu G (2016) Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement. Anal Chim Acta 938:146–155

    Article  CAS  Google Scholar 

  • Le Ru E, Etchegoin P, Meyer M (2006) Enhancement factor distribution around a single surface- enhanced Raman scattering hot spot and its relation to single molecule detection. J Chem Phys 125(20):204701

    Article  CAS  Google Scholar 

  • Lee JH, Park JY, Min K, Cha HJ, Choi SS, Yoo YJ (2010) A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens Bioelectron 25(7):1566–1570

    Article  CAS  Google Scholar 

  • Lei Y, Mulchandani P, Chen W, Wang J, Mulchandani A (2004) Whole cell–enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent. Biotechnol Bioeng 85(7):706–713

    Article  CAS  Google Scholar 

  • Lei Y, Mulchandani P, Chen W, Mulchandani A (2005a) Direct determination of p-nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida JS444-modified Clark oxygen electrode. J Agric Food Chem 53(3):524–527

    Article  CAS  Google Scholar 

  • Lei Y, Mulchandani P, Wang J, Chen W, Mulchandani A (2005b) Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Environ Sci Technol 39(22):8853–8857

    Article  CAS  Google Scholar 

  • Li H, Qu F (2007) Synthesis of CdTe quantum dots in sol− gel-derived composite silica spheres coated with calix [4] arene as luminescent probes for pesticides. Chem Mater 19(17):4148–4154

    Article  CAS  Google Scholar 

  • Li H, Li Y, Cheng J (2010a) Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids. Chem Mater 22(8):2451–2457

    Article  CAS  Google Scholar 

  • Li X, Chen G, Yang L, Jin Z, Liu J (2010b) Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv Funct Mater 20(17):2815–2824

    Article  CAS  Google Scholar 

  • Li M, Wu W, Ren W, Cheng H-M, Tang N, Zhong W et al (2012) Synthesis and upconversion luminescence of N-doped graphene quantum dots. Appl Phys Lett 101(10):103107

    Article  CAS  Google Scholar 

  • Li H, Yan X, Lu G, Su X (2018) Carbon dot-based bioplatform for dual colorimetric and fluorometric sensing of organophosphate pesticides. Sensors Actuators B Chem 260:563–570

    Article  CAS  Google Scholar 

  • Lin Y, Lu F, Wang J (2004) Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16(1–2):145–149

    Article  CAS  Google Scholar 

  • Lin T-J, Huang K-T, Liu C-Y (2006) Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens Bioelectron 22(4):513–518

    Article  CAS  Google Scholar 

  • Lin B, Yu Y, Li R, Cao Y, Guo M (2016) Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sensors Actuators B Chem 229:100–109

    Article  CAS  Google Scholar 

  • Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650

    Article  CAS  Google Scholar 

  • Lisha KP, Anshup, Pradeep T (2009) Enhanced visual detection of pesticides using gold nanoparticles. J Environ Sci Health Part B 44(7):697–705

    Article  CAS  Google Scholar 

  • Liu G, Lin Y (2005) Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal Chem 77(18):5894–5901

    Article  CAS  Google Scholar 

  • Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78(3):835–843

    Article  CAS  Google Scholar 

  • Liu G, Wang J, Barry R, Petersen C, Timchalk C, Gassman PL et al (2008) Nanoparticle-based electrochemical immunosensor for the detection of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphate pesticides and nerve agents. Chem Eur J 14(32):9951–9959

    Article  CAS  Google Scholar 

  • Liu C, Jia Q, Yang C, Qiao R, Jing L, Wang L et al (2011) Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem 83(17):6778–6784

    Article  CAS  Google Scholar 

  • Liu G, Wang S, Liu J, Song D (2012) An electrochemical immunosensor based on chemical assembly of vertically aligned carbon nanotubes on carbon substrates for direct detection of the pesticide endosulfan in environmental water. Anal Chem 84(9):3921–3928

    Article  CAS  Google Scholar 

  • Liu B, Zhou P, Liu X, Sun X, Li H, Lin M (2013) Detection of pesticides in fruits by surface- enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess Technol 6(3):710–718

    Article  CAS  Google Scholar 

  • Liu Q, Fei A, Huan J, Mao H, Wang K (2015) Effective amperometric biosensor for carbaryl detection based on covalent immobilization acetylcholinesterase on multiwall carbon nanotubes/graphene oxide nanoribbons nanostructure. J Electroanal Chem 740:8–13

    Article  CAS  Google Scholar 

  • Liu Z, Wang Y, Deng R, Yang L, Yu S, Xu S et al (2016) Fe3O4@ graphene oxide@ Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one. ACS Appl Mater Interfaces 8(22):14160–14168

    Article  CAS  Google Scholar 

  • López-Tocón I, Otero JC, Arenas JF, García-Ramos JV, Sánchez-Cortés S (2010) Trace detection of triphenylene by surface enhanced Raman spectroscopy using functionalized silver nanoparticles with bis-acridinium lucigenine. Langmuir 26(10):6977–6981

    Article  CAS  Google Scholar 

  • López-Tocón I, Otero J, Arenas J, García-Ramos JV, Sánchez-Cortés S (2011) Multicomponent direct detection of polycyclic aromatic hydrocarbons by surface-enhanced Raman spectroscopy using silver nanoparticles functionalized with the viologen host lucigenin. Anal Chem 83(7):2518–2525

    Article  CAS  Google Scholar 

  • Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326

    Article  CAS  Google Scholar 

  • Ma X, Wang J, Wu Q, Wang C, Wang Z (2014) Extraction of carbamate pesticides in fruit samples by graphene reinforced hollow fibre liquid microextraction followed by high performance liquid chromatographic detection. Food Chem 157:119–124

    Article  CAS  Google Scholar 

  • Maret S (1996) Our stolen future: how we are threatening our fertility, intelligence, and survival; A scientific detective story-Colborn T. Bowker Magazine Group Cahners Magazine Division, New York

    Google Scholar 

  • Marrakchi M, Helali S, Soto Camino J, González Martínez MÁ, Abdelghani A, Hamdi M (2013) Improvement of a pesticide immunosensor performance using site-directed antibody immobilisation and carbon nanotubes. Int J Nanotechnol 10:496–507

    Article  CAS  Google Scholar 

  • Mavrikou S, Flampouri K, Moschopoulou G, Mangana O, Michaelides A, Kintzios S (2008) Assessment of organophosphate and carbamate pesticide residues in cigarette tobacco with a novel cell biosensor. Sensors 8(4):2818–2832

    Article  Google Scholar 

  • McCarthy S (1993) Congress takes a look at estrogenic pesticides and breast cancer. J Pestic Reform 13(4):25

    Google Scholar 

  • Mehta J, Vinayak P, Tuteja SK, Chhabra VA, Bhardwaj N, Paul A et al (2016) Graphene modified screen printed immunosensor for highly sensitive detection of parathion. Biosens Bioelectron 83:339–346

    Article  CAS  Google Scholar 

  • Mehta J, Bhardwaj N, Bhardwaj SK, Tuteja SK, Vinayak P, Paul A et al (2017) Graphene quantum dot modified screen printed immunosensor for the determination of parathion. Anal Biochem 523:1–9

    Article  CAS  Google Scholar 

  • Mehta J, Dhaka S, Bhardwaj N, Paul AK, Dayananda S, Lee S-E et al (2019a) Application of an enzyme encapsulated metal-organic framework composite for convenient sensing and degradation of parathion. Sensors Actuators B Chem 290:267

    Article  CAS  Google Scholar 

  • Mehta J, Dhaka S, Paul AK, Dayananda S, Deep A (2019b) Organophosphate hydrolase conjugated UiO-66-NH2 MOF based highly sensitive optical detection of methyl parathion. Environ Res 174:46

    Article  CAS  Google Scholar 

  • Meng X, Wei J, Ren X, Ren J, Tang F (2013) A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens Bioelectron 47:402–407

    Article  CAS  Google Scholar 

  • Mishra A, Kumar J, Melo JS (2017) An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles. Biosens Bioelectron 87:332–338

    Article  CAS  Google Scholar 

  • Moreno JF, Liébanas FA, Frenich AG, Vidal JM (2006) Evaluation of different sample treatments for determining pesticide residues in fat vegetable matrices like avocado by low-pressure gas chromatography–tandem mass spectrometry. J Chromatogr A 1111(1):97–105

    Article  CAS  Google Scholar 

  • Mulbry WW, Karns JS (1989) Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl Environ Microbiol 55(2):289–293

    Article  CAS  Google Scholar 

  • Mulchandani P, Chen W, Mulchandani A, Wang J, Chen L (2001) Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens Bioelectron 16(7–8):433–437

    Article  CAS  Google Scholar 

  • Mulchandani P, Chen W, Mulchandani A (2006) Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp. Anal Chim Acta 568(1–2):217–221

    Article  CAS  Google Scholar 

  • Nair AS, Tom RT, Pradeep T (2003) Detection and extraction of endosulfan by metal nanoparticles. J Environ Monit 5(2):363–365

    Article  CAS  Google Scholar 

  • Nebu J, Devi JA, Aparna R, Aswathy B, Lekha G, Sony G (2018) Fluorescence turn-on detection of fenitrothion using gold nanoparticle quenched fluorescein and its separation using superparamagnetic iron oxide nanoparticle. Sensors Actuators B Chem 277:271–280

    Article  CAS  Google Scholar 

  • Nguyen TH, Zhang Z, Mustapha A, Li H, Lin M (2014) Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy. J Agric Food Chem 62(43):10445–10451

    Article  CAS  Google Scholar 

  • Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM (2005) Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu: Gd2O3 nanoparticles as fluorescent labels. Anal Chem 77(21):6864–6873

    Article  CAS  Google Scholar 

  • Nichkova M, Dosev D, Davies A, Gee S, Kennedy I, Hammock B (2007) Quantum dots as reporters in multiplexed immunoassays for biomarkers of exposure to agrochemicals. Anal Lett 40(7):1423–1433

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim A (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  • Nowicka AM, Kowalczyk A, Stojek Z, Hepel M (2010) Nanogravimetric and voltammetric DNA- hybridization biosensors for studies of DNA damage by common toxicants and pollutants. Biophys Chem 146(1):42–53

    Article  CAS  Google Scholar 

  • Noyrod P, Chailapakul O, Wonsawat W, Chuanuwatanakul S (2014) The simultaneous determination of isoproturon and carbendazim pesticides by single drop analysis using a graphene- based electrochemical sensor. J Electroanal Chem 719:54–59

    Article  CAS  Google Scholar 

  • Oh S, Kim Y, Yoo D, Oh S, Park S (1993) Sensing behaviour of semconducting metal oxides for the detection of organophosphorus compounds. Sensors Actuators B Chem 13(1–3):400–403

    Article  CAS  Google Scholar 

  • Parveen Z, Khuhro M, Rafiq N (2005) Monitoring of pesticide residues in vegetables (2000–2003) in Karachi, Pakistan. Bull Environ Contam Toxicol 74(1):170–176

    Article  CAS  Google Scholar 

  • Patel GM, Rohit JV, Singhal RK, Kailasa SK (2015) Recognition of carbendazim fungicide in environmental samples by using 4-aminobenzenethiol functionalized silver nanoparticles as a colorimetric sensor. Sensors Actuators B Chem 206:684–691

    Article  CAS  Google Scholar 

  • Pavlov V, Xiao Y, Willner I (2005) Inhibition of the acetycholine esterase-stimulated growth of Au nanoparticles: nanotechnology-based sensing of nerve gases. Nano Lett 5(4):649–653

    Article  CAS  Google Scholar 

  • Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J et al (2010) Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surf B: Biointerfaces 77(1):69–74

    Article  CAS  Google Scholar 

  • Peng K, Lu A, Zhang R, Lee ST (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18(19):3026–3035

    Article  CAS  Google Scholar 

  • Peral J, Domènech X, Ollis DF (1997) Heterogeneous photocatalysis for purification, decontamination and deodorization of air. J Chem Technol Biotechnol Technol 70(2):117–140

    Article  CAS  Google Scholar 

  • Pérez-Ruiz T, Martínez-Lozano C, Tomás V, Martín J (2005) High-performance liquid chromatographic assay of phosphate and organophosphorus pesticides using a post-column photochemical reaction and fluorimetric detection. Anal Chim Acta 540(2):383–391

    Article  CAS  Google Scholar 

  • Peter JV, Sudarsan TI, Moran JL (2014) Clinical features of organophosphate poisoning: a review of different classification systems and approaches. Indian J Crit Care Med 18(11):735

    Article  Google Scholar 

  • Pimentel D, Hart K (2001) Pesticide use: ethical, environmental, and public health implications. In: Galston W, Shurr E (eds) New dimensions in bioethics: science, ethics and the formulation of public policy. Springer, Boston, pp 79–108

    Chapter  Google Scholar 

  • Pino F, Mayorga-Martinez CC, Merkoçi A (2016) High-performance sensor based on copper oxide nanoparticles for dual detection of phenolic compounds and a pesticide. Electrochem Commun 71:33–37

    Article  CAS  Google Scholar 

  • Pop A, Manea F, Flueras A, Schoonman J (2017) Simultaneous voltammetric detection of carbaryl and paraquat pesticides on graphene-modified boron-doped diamond electrode. Sensors 17(9):2033

    Article  CAS  Google Scholar 

  • Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393(2):569–582

    Article  CAS  Google Scholar 

  • Protière M, Reiss P (2007) Highly luminescent Cd1− xZnxSe/ZnS core/shell nanocrystals emitting in the blue–green spectral range. Small 3(3):399–403

    Article  CAS  Google Scholar 

  • Public health impact of pesticides used in agriculture (1990) W. H. Organization

    Google Scholar 

  • Pumera M, Miyahara Y (2009) What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties? Nanoscale 1(2):260–265

    Article  CAS  Google Scholar 

  • Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29(9):954–965

    Article  CAS  Google Scholar 

  • Qian J, Li Q, Liang L, Li T-T, Hu Y, Huang S (2017) A microporous MOF with open metal sites and Lewis basic sites for selective CO 2 capture. Dalton Trans 46(41):14102–14106

    Article  CAS  Google Scholar 

  • Rahmani T, Bagheri H, Behbahani M, Hajian A, Afkhami A (2018) Modified 3D graphene-Au as a novel sensing layer for direct and sensitive electrochemical determination of carbaryl pesticide in fruit, vegetable, and water samples. Food Anal Methods 11(11):3005–3014

    Article  Google Scholar 

  • Rainina E, Efremenco E, Varfolomeyev S, Simonian A, Wild J (1996) The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins. Biosens Bioelectron 11(10):991–1000

    Article  CAS  Google Scholar 

  • Ravelo-Pérez LM, Hernández-Borges J, Rodríguez-Delgado MÁ (2008) Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices. J Chromatogr A 1211(1–2):33–42

    Article  CAS  Google Scholar 

  • Rawtani D, Khatri N, Tyagi S, Pandey G (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manag 206:749–762

    Article  CAS  Google Scholar 

  • Reigart J, Roberts J (1999) Organophosphate insecticides. Recognition and management of pesticide poisonings. US Environmental Protection Agency, Washington, DC, pp 34–40

    Google Scholar 

  • Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5(2):154–168

    Article  CAS  Google Scholar 

  • Rekha D, Suvardhan K, Kumar KS, Jayaraj P, Chiranjeevi P (2006) Analysis of carbaryl pesticide residues in environmental samples with spectrophotometry. Chin J Chem 24(8):1095–1100

    Article  CAS  Google Scholar 

  • Ren X, Liu H, Chen L (2015) Fluorescent detection of chlorpyrifos using Mn (II)-doped ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta 182(1–2):193–200

    Article  CAS  Google Scholar 

  • Ribeiro FWP, Barroso MF, Morais S, Viswanathan S, de Lima-Neto P, Correia AN et al (2014) Simple laccase-based biosensor for formetanate hydrochloride quantification in fruits. Bioelectrochemistry 95:7–14

    Article  CAS  Google Scholar 

  • Rosenthal SJ (2001) Bar-coding biomolecules with fluorescent nanocrystals. Nat Biotechnol Nat Publ Group 19:621

    Article  CAS  Google Scholar 

  • Rostamnia S, Mohsenzad F (2018) Nanoarchitecturing of open metal site Cr-MOFs for oxodiperoxo molybdenum complexes [MoO (O2) 2@ En/MIL-100 (Cr)] as promising and bifunctional catalyst for selective thioether oxidation. Mol Catal 445:12–20

    Article  CAS  Google Scholar 

  • Saa L, Virel A, Sanchez-Lopez J, Pavlov V (2010) Analytical applications of enzymatic growth of quantum dots. Chem Eur J 16(21):6187–6192

    Article  CAS  Google Scholar 

  • Sahoo D, Mandal A, Mitra T, Chakraborty K, Bardhan M, Dasgupta AK (2018) Nanosensing of pesticides by zinc oxide quantum dot: an optical and electrochemical approach for the detection of pesticides in water. J Agric Food Chem 66(2):414–423

    Article  CAS  Google Scholar 

  • Salvador IM, Frenich AG, González FE, Vidal JM (2006) Determination of organophosphorus pesticides in vegetables by GC with pulsed flame-photometric detection, and confirmation by MS. Chromatographia 64(11–12):667–672

    Article  CAS  Google Scholar 

  • Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108(1):109–139

    Article  CAS  Google Scholar 

  • Schachl K, Alemu H, Kalcher K, Ježkova J, Švancara I, Vytřas K (1997) Amperometric determination of hydrogen peroxide with a manganese dioxide-modified carbon paste electrode using flow injection analysis. Analyst 122(9):985–989

    Article  CAS  Google Scholar 

  • Scida K, Stege PW, Haby G, Messina GA, García CD (2011) Recent applications of carbon- based nanomaterials in analytical chemistry: critical review. Anal Chim Acta 691(1–2):6–17

    Article  CAS  Google Scholar 

  • Sharma P, Sablok K, Bhalla V, Suri CR (2011) A novel disposable electrochemical immunosensor for phenyl urea herbicide diuron. Biosens Bioelectron 26(10):4209–4212

    Article  CAS  Google Scholar 

  • Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48(31):3686–3699

    Article  CAS  Google Scholar 

  • Shi Z, Li Q, Xu D, Huai Q, Zhang H (2016) Graphene-based pipette tip solid-phase extraction with ultra-high performance liquid chromatography and tandem mass spectrometry for the analysis of carbamate pesticide residues in fruit juice. J Sep Sci 39(22):4391–4397

    Article  CAS  Google Scholar 

  • Singha DK, Majee P, Mondal SK, Mahata P (2017) Highly selective aqueous phase detection of azinphos-methyl pesticide in ppb level using a cage-connected 3D MOF. Chem Select 2(20):5760–5768

    CAS  Google Scholar 

  • Soomro RA, Hallam KR, Ibupoto ZH, Tahira A, Sherazi STH, Memon SS et al (2016) Amino acid assisted growth of CuO nanostructures and their potential application in electrochemical sensing of organophosphate pesticide. Electrochim Acta 190:972–979

    Article  CAS  Google Scholar 

  • Stenersen J (2004) Chemical pesticides mode of action and toxicology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Sun X, Qiao L, Wang X (2013) A novel immunosensor based on Au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface. Nano Micro Lett 5(3):191–201

    Article  CAS  Google Scholar 

  • Tang L, Zeng G-M, Shen G-L, Li Y-P, Zhang Y, Huang D-L (2008) Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environ Sci Technol 42(4):1207–1212

    Article  CAS  Google Scholar 

  • Tang T, Deng J, Zhang M, Shi G, Zhou T (2016) Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: a universal strategy for ratiometric detection of organophosphorus pesticides. Talanta 146:55–61

    Article  CAS  Google Scholar 

  • Tao C-J, Hu J-Y, Li J-Z, Zheng S-S, Liu W, Li C-J (2009) Multi-residue determination of pesticides in vegetables by gas chromatography/ion trap mass spectrometry. Bull Environ Contam Toxicol 82(1):111–115

    Article  CAS  Google Scholar 

  • Tao C-L, Chen B, Liu X-G, Zhou L-J, Zhu X-L, Cao J et al (2017) A highly luminescent entangled metal–organic framework based on pyridine-substituted tetraphenylethene for efficient pesticide detection. Chem Commun 53(72):9975–9978

    Article  CAS  Google Scholar 

  • The WHO recommended classification of pesticides by hazard and guidelines to classification 2009 (2010) W. H. Organization

    Google Scholar 

  • Tkachev S, Buslaeva EY, Gubin S (2011) Graphene: a novel carbon nanomaterial. Inorg Mater 47(1):1–10

    Article  CAS  Google Scholar 

  • Tortolini C, Bollella P, Antiochia R, Favero G, Mazzei F (2016) Inhibition-based biosensor for atrazine detection. Sensors Actuators B Chem 224:552–558

    Article  CAS  Google Scholar 

  • Tunesi MM, Kalwar N, Abbas MW, Karakus S, Soomro RA, Kilislioglu A et al (2018) Functionalised CuO nanostructures for the detection of organophosphorus pesticides: a non-enzymatic inhibition approach coupled with nano-scale electrode engineering to improve electrode sensitivity. Sensors Actuators B Chem 260:480–489

    Article  CAS  Google Scholar 

  • Vaccari DA, Strom PF, Alleman JE (2006) Environmental biology for engineers and scientists. Wiley Online Library

    Google Scholar 

  • Valera E, Ramón-Azcón J, Barranco A, Alfaro B, Sánchez-Baeza F, Marco M-P et al (2010) Determination of atrazine residues in red wine samples. A conductimetric solution. Food Chem 122(3):888–894

    Article  CAS  Google Scholar 

  • Valera E, García-Febrero R, Pividori I, Sánchez-Baeza F, Marco M-P (2014) Coulombimetric immunosensor for paraquat based on electrochemical nanoprobes. Sensors Actuators B Chem 194:353–360

    Article  CAS  Google Scholar 

  • Védrine C, Leclerc J-C, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18(4):457–463

    Article  CAS  Google Scholar 

  • Vikrant K, Tsang DC, Raza N, Giri BS, Kukkar D, Kim K-H (2018) Potential utility of metal– organic framework-based platform for sensing pesticides. ACS Appl Mater Interfaces 10(10):8797–8817

    Article  CAS  Google Scholar 

  • Vinayaka A, Thakur M (2010) Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal Bioanal Chem 397(4):1445–1455

    Article  CAS  Google Scholar 

  • Vinayaka A, Basheer S, Thakur M (2009) Bioconjugation of CdTe quantum dot for the detection of 2, 4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron 24(6):1615–1620

    Article  CAS  Google Scholar 

  • Vlitos A (1952) Biological activation of sodium 2-(2, 4-dichlorophenoxy) ethyl sulfate by Bacillus cereus var. mycoides. Contrib Boyce Thompson Inst 16:435–438

    Google Scholar 

  • Vongsvivut J, Robertson EG, McNaughton D (2010) Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles. J Raman Spectrosc 41(10):1137–1148

    Article  CAS  Google Scholar 

  • Wang M, Li Z (2008) Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensors Actuators B Chem 133(2):607–612

    Article  CAS  Google Scholar 

  • Wang S, Zhao P, Min G, Fang G (2007) Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography–mass spectrometry. J Chromatogr A 1165(1–2):166–171

    Article  CAS  Google Scholar 

  • Wang H, Wang J, Timchalk C, Lin Y (2008) Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Anal Chem 80(22):8477–8484

    Article  CAS  Google Scholar 

  • Wang X, Shi W, She G, Mu L, Lee S (2010) High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides. Appl Phys Lett 96(5):053104

    Article  CAS  Google Scholar 

  • Wang Y, Zhang S, Du D, Shao Y, Li Z, Wang J et al (2011) Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. J Mater Chem 21(14):5319–5325

    Article  CAS  Google Scholar 

  • Wang G-Y, Song C, Kong D-M, Ruan W-J, Chang Z, Li Y (2014a) Two luminescent metal– organic frameworks for the sensing of nitroaromatic explosives and DNA strands. J Mater Chem A 2(7):2213–2220

    Article  CAS  Google Scholar 

  • Wang M, Huang J, Wang M, Zhang D, Chen J (2014b) Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem 151:191–197

    Article  CAS  Google Scholar 

  • Wang X, Cao Y, Chen D, Zhao G, Sun X (2014c) An amperometric immunosensor based on graphene composite film and protein a for chlorpyrifos detection. Sensors Transducers 178(9):47

    Google Scholar 

  • Wang Y, Jin J, Yuan C, Zhang F, Ma L, Qin D et al (2015) A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides. Analyst 140(2):560–566

    Article  CAS  Google Scholar 

  • Wang S, Shan L, Fan Y, Jia J, Xu J, Wang L (2017) Fabrication of Ln-MOFs with color-tunable photoluminescence and sensing for small molecules. J Solid State Chem 245:132–137

    Article  CAS  Google Scholar 

  • Wang Q, Yin Q, Fan Y, Zhang L, Xu Y, Hu O et al (2019) Double quantum dots-nanoporphyrin fluorescence-visualized paper-based sensors for detecting organophosphorus pesticides. Talanta 199:46–53

    Article  CAS  Google Scholar 

  • Ware GW (1974) Ecological history of DDT in Arizona. J Ariz Acad Sci 9(2):61–65

    Article  Google Scholar 

  • Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 86(24):11937–11941

    Article  CAS  Google Scholar 

  • Weiner BP, Worth RM (1969) Insecticides: household use and respiratory impairment. Hawaii Med J 28(4):283–285

    CAS  Google Scholar 

  • Wen L-L, Wang F, Leng X-K, Wang C-G, Wang L-Y, Gong J-M et al (2010) Efficient detection of organophosphate pesticide based on a metal− organic framework derived from viphenyltetracarboxylic acid. Cryst Growth Des 10(7):2835–2838

    Article  CAS  Google Scholar 

  • Wong LS, Lee YH, Surif S (2013) Performance of a cyanobacteria whole cell-based fluorescence biosensor for heavy metal and pesticide detection. Sensors 13(5):6394–6404

    Article  CAS  Google Scholar 

  • Wu S, Lan X, Cui L, Zhang L, Tao S, Wang H et al (2011) Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide. Anal Chim Acta 699(2):170–176

    Article  CAS  Google Scholar 

  • Wu L, Lei W, Han Z, Zhang Y, Xia M, Hao Q (2015) A novel non-enzyme amperometric platform based on poly (3-methylthiophene)/nitrogen doped graphene modified electrode for determination of trace amounts of pesticide phoxim. Sensors Actuators B Chem 206:495–501

    Article  CAS  Google Scholar 

  • Wu S, Li D, Wang J, Zhao Y, Dong S, Wang X (2017a) Gold nanoparticles dissolution based colorimetric method for highly sensitive detection of organophosphate pesticides. Sensors Actuators B Chem 238:427–433

    Article  CAS  Google Scholar 

  • Wu X, Song Y, Yan X, Zhu C, Ma Y, Du D et al (2017b) Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens Bioelectron 94:292–297

    Article  CAS  Google Scholar 

  • Xiong D, Li H (2008) Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology 19(46):465502

    Article  CAS  Google Scholar 

  • Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G et al (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137

    Article  CAS  Google Scholar 

  • Yan X, Song Y, Zhu C, Li H, Du D, Su X et al (2018) MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal Chem 90(4):2618–2624

    Article  CAS  Google Scholar 

  • Yang C, Hamel C, Vujanovic V, Gan Y (2011) Fungicide: modes of action and possible impact on nontarget microorganisms. ISRN Ecol 2011:130289

    Google Scholar 

  • Yang S, Luo S, Liu C, Wei W (2012) Direct synthesis of graphene–chitosan composite and its application as an enzymeless methyl parathion sensor. Colloids Surf B: Biointerfaces 96:75–79

    Article  CAS  Google Scholar 

  • You H, Hua X, Feng L, Sun N, Rui Q, Wang L et al (2017) Competitive immunoassay for imidaclothiz using upconversion nanoparticles and gold nanoparticles as labels. Microchim Acta 184(4):1085–1092

    Article  CAS  Google Scholar 

  • Yuan J, Guo W, Wang E (2008) Utilizing a CdTe quantum dots− enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal Chem 80(4):1141–1145

    Article  CAS  Google Scholar 

  • Zhang J, Lei J, Pan R, Xue Y, Ju H (2010a) Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosens Bioelectron 26(2):371–376

    Article  CAS  Google Scholar 

  • Zhang K, Mei Q, Guan G, Liu B, Wang S, Zhang Z (2010b) Ligand replacement-induced fluorescence switch of quantum dots for ultrasensitive detection of organophosphorothioate pesticides. Anal Chem 82(22):9579–9586

    Article  CAS  Google Scholar 

  • Zhang L, Zhang A, Du D, Lin Y (2012) Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. Nanoscale 4(15):4674–4679

    Article  CAS  Google Scholar 

  • Zhang S, Jiao Z, Yao W (2014) A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J Chromatogr A 1371:74–81

    Article  CAS  Google Scholar 

  • Zhang C, Zhang K, Zhao T, Liu B, Wang Z, Zhang Z (2017) Selective phosphorescence sensing of pesticide based on the inhibition of silver (I) quenched ZnS: Mn2+ quantum dots. Sensors Actuators B Chem 252:1083–1088

    Article  CAS  Google Scholar 

  • Zhao Y, Ma Y, Li H, Wang L (2011) Composite QDs@ MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal Chem 84(1):386–395

    Article  CAS  Google Scholar 

  • Zhao L, Zhao F, Zeng B (2013a) Electrochemical determination of methyl parathion using a molecularly imprinted polymer–ionic liquid–graphene composite film coated electrode. Sensors Actuators B Chem 176:818–824

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang W, Lin Y, Du D (2013b) The vital function of Fe 3 O 4@ Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 5(3):1121–1126

    Article  CAS  Google Scholar 

  • Zhao S-S, Yang J, Liu Y-Y, Ma J-F (2016) Fluorescent aromatic tag-functionalized MOFs for highly selective sensing of metal ions and small organic molecules. Inorg Chem 55(5):2261–2273

    Article  CAS  Google Scholar 

  • Zheng Z, Li X, Dai Z, Liu S, Tang Z (2011a) Detection of mixed organophosphorus pesticides in real samples using quantum dots/bi-enzyme assembly multilayers. J Mater Chem 21(42):16955–16962

    Article  CAS  Google Scholar 

  • Zheng Z, Zhou Y, Li X, Liu S, Tang Z (2011b) Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens Bioelectron 26(6):3081–3085

    Article  CAS  Google Scholar 

  • Zheng X, Zhou L, Huang Y, Wang C, Duan J, Wen L et al (2014) A series of metal–organic frameworks based on 5-(4-pyridyl)-isophthalic acid: selective sorption and fluorescence sensing. J Mater Chem A 2(31):12413–12422

    Article  CAS  Google Scholar 

  • Zhengxiong C, Wanpeng Z, Shaoxia Y, Jianbing W (2006) Preparation and characterization of TiO2-CeO2 catalyst for catalytic wet air oxidation of phenol. Chin J Catal 27(12):1073–1079

    Google Scholar 

  • Zhou Q, Ding Y, Xiao J (2006) Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-performance liquid chromatography. Anal Bioanal Chem 385(8):1520–1525

    Article  CAS  Google Scholar 

  • Zhu Y, Cao Y, Sun X, Wang X (2013) Amperometric immunosensor for carbofuran detection based on MWCNTs/GS-PEI-Au and AuNPs-antibody conjugate. Sensors 13(4):5286–5301

    Article  CAS  Google Scholar 

  • Zor E, Morales-Narváez E, Zamora-Gálvez A, Bingol H, Ersoz M, Merkoçi A (2015) Graphene quantum dots-based photoluminescent sensor: a multifunctional composite for pesticide detection. ACS Appl Mater Interfaces 7(36):20272–20279

    Article  CAS  Google Scholar 

  • Zou Z, Du D, Wang J, Smith JN, Timchalk C, Li Y et al (2010) Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Anal Chem 82(12):5125–5133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, J., Kumar, R., Dhaka, S., Deep, A. (2020). Biofunctionalized Nanostructured Materials for Sensing of Pesticides. In: Kumar Tuteja, S., Arora, D., Dilbaghi, N., Lichtfouse, E. (eds) Nanosensors for Environmental Applications. Environmental Chemistry for a Sustainable World, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-38101-1_2

Download citation

Publish with us

Policies and ethics