Skip to main content

Molecular Rotors in Viscous Fluids: A Numerical Analysis Aid by GPU Computing

  • Conference paper
  • First Online:
Supercomputing (ISUM 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1151))

Included in the following conference series:

  • 474 Accesses

Abstract

Molecular rotors are microscopic structures composed of two coupled parts that can rotate mutually. They have promising applications in viscosity measurement and flow detection in micro-sized and complex geometries. We propose a model for studying molecular rotors as classical systems moving in viscous environments, subjected to internal interactions and stochastic forces. Our model is expressed as a set of non-linear stochastic Langevin equations that are solved numerically using a Brownian Dynamics procedure. Attention is focused on the calculation of the two-time correlation function of the internal angular variable. For small internal forces, this correlation turns out to have a very slow time decay and its correct estimation requires long numerical experiments. We propose a CUDA implementation for a computer cluster with TESLA GPUs that calculates angular correlation functions in parallel. The implementation reduces the used computational time considerably in comparison with the one consumed by a usual serial scheme. It allows for the simulation of massive molecular rotors ensembles from which reliable results can be obtained. It is discussed how the GPU implementation can be improved in modern GPUs architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kottas, G.S., Clarke, L.I., Horinek, D., Mich, J.: Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005)

    Article  Google Scholar 

  2. Cao, J., Lu, H.-Y., Chen, C.-F.: Synthesis, structures, and properties of peripheral o-dimethoxy-substituted pentiptycene quinones and their o-quinone derivatives. Tetrahedron 65, 8104–8112 (2009)

    Article  Google Scholar 

  3. Khuong, T.V., Dang, H., Jarowski, P.D., Maverick, E.F., Garcia-Garibay, M.A.: Rotational dynamics in a crystalline molecular gyroscope by variable-temperature 13C NMR, 2H NMR, X-ray diffraction, and force field calculations. J. Am. Chem. Soc. 129(4), 839–845 (2007). PMID: 17243820

    Article  Google Scholar 

  4. Akers, W., Haidekker, M.A.: A molecular rotor as viscosity sensor in aqueous colloid solutions. J. Biomech. Eng. 126(3), 340–345 (2004)

    Article  Google Scholar 

  5. Comotti, A., Bracco, S., Ben, T., Qiu, S., Sozzani, P.: Molecular rotors in porous organic frameworks. Angew. Chem. Int. Ed. 53, 1043–1047 (2014)

    Article  Google Scholar 

  6. Armspach, D., et al.: Catenated cyclodextrins. Chem. A Eur. J. 1(1), 33–55 (1995)

    Article  Google Scholar 

  7. Kim, K., Lee, J.W.: Rotaxane dendrimers. Top. Curr. Chem. 228, 111–140 (2003)

    Article  Google Scholar 

  8. Haidekker, M.A., Theodorakis, E.A.: Environment-sensitive behavior of fluorescent molecular rotors. J. Biol. Eng. 4, 11 (2010)

    Article  Google Scholar 

  9. López-Duarte, I., Vu, T.T., Izquierdo, M.A., Bull, J.A., Kuimova, M.K.: A molecular rotor for measuring viscosity in plasma membranes of live cells. Chem. Commun. 50, 5282–5284 (2014)

    Article  Google Scholar 

  10. Haidekker, M.A., Akers, W., Lichlyter, D., Brady, T.P., Theodorakis, E.A.: Sensing of flow and shear stress using fluorescent molecular rotors. Sens. Lett. 3, 42–48 (2005)

    Article  Google Scholar 

  11. Mustafic, A., Huang, H.-M., Theodorakis, E.A., Haidekker, M.A.: Imaging of flow patterns with fluorescent molecular rotors. J. Fluorescence 20, 1087–1098 (2010)

    Article  Google Scholar 

  12. Dong, J., et al.: Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nat. Commun. 8, 1142 (2017)

    Article  Google Scholar 

  13. Valeur, B.: Molecular fluorescence. In: Digital Encyclopedia of Applied Physics, pp. 477–531 (2009)

    Google Scholar 

  14. Horinek, D., Michl, J.: Molecular dynamics simulation of an electric field driven dipolar molecular rotor attached to a quartz glass surface. J. Am. Chem. Soc. 125(39), 11900–11910 (2003)

    Article  Google Scholar 

  15. Kudernac, T., et al.: Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011)

    Article  Google Scholar 

  16. Ambı́a, F., Hı́jar, H.: Stochastic dynamics of a brownian motor based on morphological changes. Rev. Mex. Fis. 63, 314–327 (2017)

    MathSciNet  Google Scholar 

  17. Hı́jar, H.: Operation of theoretical brownian motors based on morphological adaptations. Physica A 513, 781–797 (2019)

    Article  MathSciNet  Google Scholar 

  18. Marchesoni, F., Vij, J.K., Coffey, W.T.: Nonlinear budó model for dielectric relaxation: comparison with new experimental data. Z. Phys. B – Condens. Matter 61, 357–366 (1985)

    Article  Google Scholar 

  19. Gutiérrez-Garibay, D.: Análisis teórico y numérico de la dinámica estocástica de giroscopios moleculares. Master’s thesis, La Salle University Mexico, Mexico City, Mexico (2019, in progress)

    Google Scholar 

  20. Marchesoni, F., Vij, J.K.: Brownian motion in a periodic potential: application to dielectric relaxation. Z. Phys. B – Condens. Matter 58, 187–198 (1985)

    Article  Google Scholar 

  21. NVIDIA Corporation. Programming guide v10.0.130. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-general-purpose-parallel-computing-architecture. Accessed 18 Feb 2019

  22. NVIDIA Corporation. Programming guide v10.0.130. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing__memory-bandwidth-for-cpu-and-gpu. Accessed 18 Feb 2019

  23. NVIDIA Corporation. Tesla v100 performance guide. https://images.nvidia.com/content/pdf/v100-application-performance-guide.pdf. Accessed 18 Feb 2019

  24. Barda, D., Bellisbc, M., Allend, M.T., Yepremyane, H., Kratochvilf, J.M.: Cosmological calculations on the GPU. Astron. and Comput. 1, 17–22 (2013)

    Article  Google Scholar 

  25. Alonso, D.: CUTE solutions for two-point correlation functions from large cosmological datasets. arXiv:1210.1833 [astro-ph.IM] (2013)

  26. Ponce, R., Cardenas-Montes, M., Rodriguez-Vazquez, J.J., Sanchez, E., Sevilla, I.: Application of GPUs for the calculation of two point correlation functions in cosmology. arXiv:1204.6630 [astro-ph.IM] (2012)

  27. Gembris, D., Neeb, M., Gipp, M., et al.: Correlation analysis on GPU systems using NVIDIA’s CUDA. J. Real-Time Image Proc. 6, 275–280 (2011). https://doi.org/10.1007/s11554-010-0162-9

    Article  Google Scholar 

Download references

Acknowledgments

H.H. thanks La Salle University Mexico for financial support under grant NEC-08/18. D.G-G. thanks La Salle University Mexico for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Gutiérrez-Garibay or Humberto Híjar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gutiérrez-Garibay, D., Híjar, H. (2019). Molecular Rotors in Viscous Fluids: A Numerical Analysis Aid by GPU Computing. In: Torres, M., Klapp, J. (eds) Supercomputing. ISUM 2019. Communications in Computer and Information Science, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-38043-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38043-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38042-7

  • Online ISBN: 978-3-030-38043-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics