Advertisement

Analysis of Cardiac Contraction Patterns

Chapter
  • 230 Downloads
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)

Abstract

Heart failure is defined as a syndrome characterized by a remodeling in the cardiac muscle structure that diminishes the strength and synchrony of contractions, leading the subject to a functional capacity deterioration that progressively triggers fatal clinical outcomes. There are specific pharmacological therapies to reduce failure progression. However, once the symptoms have developed, it is necessary to combine different treatments to alleviate them and to improve the quality of life. The most advanced therapies in recent years utilize implantable electronic devices known as cardiac resynchronizers. Cardiac resynchronization therapy has proven to be highly beneficial to patients with severe heart failure, because it reduces the number of hospitalizations, increases exercise resistance, and improves left ventricle systolic function and patient’s survival. Nonetheless, 20–30% of patients do not respond to this therapy, thus requiring reliable techniques to predict the probability of a successful outcome in a case-by-case basis. This chapter analyzes several methods that have been proposed to achieve this goal.

The first section reviews the anatomical and physiological basis of cardiac contraction, as well as the main techniques to evaluate it. The second section describes an overview of the medical imaging modalities most frequently used for assessment of the cardiac contraction pattern. Methods of dynamic cardiac image processing such as Fourier analysis and factor analysis of dynamic structures are detailed in the third section, in order to explain statistical models of cardiac contraction patterns. A strategy to classify the severity of dyssynchrony is also discussed. Finally, a section of perspectives of the analysis of cardiac contraction patterns is presented.

Keywords

Cardiac function assessment Cardiac imaging analysis Cardiac dyssynchrony Factor analysis of dynamic structures (FADS) 

References

  1. 1.
    Aandal, G., et al. (2014). Evaluation of left ventricular ejection fraction using through-time radial GRAPPA. Journal of Cardiovascular Magnetic Resonance, 16(1), 79.CrossRefGoogle Scholar
  2. 2.
    Ababneh, A. A., et al. (2000). Normal limits for left ventricular ejection fraction and volumes estimated with gated myocardial perfusion imaging in patients with normal exercise test results: Influence of tracer, gender, and acquisition camera. Journal of Nuclear Cardiology, 7(6), 661–668.CrossRefGoogle Scholar
  3. 3.
    Abraham, W. T., & Hayes, D. L. (2003). Cardiac resynchronization therapy for heart failure. Circulation, 108(21), 2596–2603.CrossRefGoogle Scholar
  4. 4.
    Abraham, W. T., et al. (2002). Cardiac resynchronization in chronic heart failure. New England Journal of Medicine, 346(24), 1845–1853.CrossRefGoogle Scholar
  5. 5.
    Abraham, T. P., Dimaano, V. L., & Liang, H.-Y. (2007). Role of Tissue Doppler and strain echocardiography in current clinical practice. Circulation, 116(22), 2597–2609.CrossRefGoogle Scholar
  6. 6.
    Aletras, A. H., et al. (1999). DENSE: Displacement encoding with stimulated echoes in cardiac functional MRI. Journal of Magnetic Resonance, 137(1), 247–252.CrossRefGoogle Scholar
  7. 7.
    AlJaroudi, W., et al. (2011). Nonechocardiographic imaging in evaluation for cardiac resynchronization therapy. Circulation. Cardiovascular Imaging, 4(3), 334–343.CrossRefGoogle Scholar
  8. 8.
    Auricchio, A., et al. (2004). Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation, 109(9), 1133–1139.CrossRefGoogle Scholar
  9. 9.
    Bai, W., et al. (2015). A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion. Medical Image Analysis, 26(1), 133–145.CrossRefGoogle Scholar
  10. 10.
    Baldasseroni, S., et al. (2002). Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: A report from the Italian Network on Congestive Heart Failure. American Heart Journal, 143(3), 398–405.CrossRefGoogle Scholar
  11. 11.
    Ballester-Rodés, M., et al. (2005). Base-to-apex ventricular activation: Fourier studies in 29 normal individuals. European Journal of Nuclear Medicine and Molecular Imaging, 32(12), 1481–1483.CrossRefGoogle Scholar
  12. 12.
    Bank, A. J., & Kelly, A. S. (2006). Tissue Doppler imaging and left ventricular dyssynchrony in heart failure. Journal of Cardiac Failure, 12(2), 154–162.CrossRefGoogle Scholar
  13. 13.
    Bauer, R., et al. (1983). In vivo/in vitro labeling of red blood cells with 99mTc. European Journal of Nuclear Medicine, 8(5), 218–225.CrossRefGoogle Scholar
  14. 14.
    Belge, B., et al. (2006). Accurate estimation of global and regional cardiac function by retrospectively gated multidetector row computed tomography: Comparison with cine magnetic resonance imaging. European Radiology, 16(7), 1424–1433.CrossRefGoogle Scholar
  15. 15.
    Bellenger, N. G., et al. (2000). Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? European Heart Journal, 21(16), 1387–1396.CrossRefGoogle Scholar
  16. 16.
    Botvinick, E., et al. (1982a). The phase image: Its relationship to patterns of contraction and conduction. Circulation, 65(3), 551–560.CrossRefGoogle Scholar
  17. 17.
    Botvinick, E. H., et al. (1982b). An accurate means of detecting and characterizing abnormal patterns of ventricular activation by phase image analysis. The American Journal of Cardiology, 50(2), 289–298.CrossRefGoogle Scholar
  18. 18.
    Buckberg, G., et al. (2008). Cardiac mechanics revisited: The relationship of cardiac architecture to ventricular function. Circulation, 118(24), 2571–2587.CrossRefGoogle Scholar
  19. 19.
    Budge, L. P., et al. (2012). MR cine DENSE dyssynchrony parameters for the evaluation of heart failure. JACC: Cardiovascular Imaging, 5(8), 789–797.Google Scholar
  20. 20.
    Burkhoff, D., Oikawa, R. Y., & Sagawa, K. (1986). Influence of pacing site on canine left ventricular contraction. American Journal of Physiology-Heart and Circulatory Physiology, 251(2), H428–H435.CrossRefGoogle Scholar
  21. 21.
    Cavaillolès, F., et al. (1995). Comparison between factor analysis of dynamic structures and Fourier analysis in detection of segmental wall motion abnormalities: A clinical evaluation. The International Journal of Cardiac Imaging, 11(4), 263–272.CrossRefGoogle Scholar
  22. 22.
    Cerqueira, M. D., et al. (2002). Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation, 105(4), 539–542.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 27:1–27:27.CrossRefGoogle Scholar
  24. 24.
    Chen, Y., et al. (2015). Efficacy of equilibrium radionuclide angiography to predict acute response to cardiac resynchronization therapy in patients with heart failure. Nuclear Medicine Communications, 36(6), 610–618.CrossRefGoogle Scholar
  25. 25.
    Chua, T., et al. (2000). Accuracy of the automated assessment of left ventricular function with gated perfusion SPECT in the presence of perfusion defects and left ventricular dysfunction: Correlation with equilibrium radionuclide ventriculography and echocardiography. Journal of Nuclear Cardiology, 7(4), 301–311.CrossRefGoogle Scholar
  26. 26.
    Chuang, M. L., et al. (2000). Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: Assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. Journal of the American College of Cardiology, 35(2), 477–484.CrossRefGoogle Scholar
  27. 27.
    Chung, E. S., et al. (2008). Results of the predictors of response to CRT (PROSPECT) trial. Circulation, 117(20), 2608–2616.CrossRefGoogle Scholar
  28. 28.
    Cleland, J. G. F., et al. (2005). The effect of cardiac resynchronization on morbidity and mortality in heart failure. The New England Journal of Medicine, 352(15), 1539–1549.CrossRefGoogle Scholar
  29. 29.
    Davie, A. P., et al. (1996). Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction. BMJ, 312(7025), 222.CrossRefGoogle Scholar
  30. 30.
    Delgado, V., et al. (2008). Assessment of left ventricular dyssynchrony by speckle tracking strain imaging. Journal of the American College of Cardiology, 51(20), 1944–1952.CrossRefGoogle Scholar
  31. 31.
    Dickstein, D. P., et al. (2008). Proton magnetic resonance spectroscopy in youth with severe mood dysregulation. Psychiatry Research – Neuroimaging, 163(1), 30–39.CrossRefGoogle Scholar
  32. 32.
    Dimitriadou, E., et al. (2008). Misc functions of the Department of Statistics (e1071), TU Wien. R Package, 1, 5–24.Google Scholar
  33. 33.
    Dorbala, S., & Slomka, P. (2015). Nuclear cardiology, an issue of cardiology clinics. Elsevier Health Sciences, USA.Google Scholar
  34. 34.
    Duchateau, N., et al. (2018). Model-based generation of large databases of cardiac images: Synthesis of pathological cine MR sequences from real healthy cases. IEEE Transactions on Medical Imaging, 37(3), 755–766.CrossRefGoogle Scholar
  35. 35.
    Epstein, F. H. (2007). MRI of left ventricular function. Journal of Nuclear Cardiology, 14(5), 729–744.CrossRefGoogle Scholar
  36. 36.
    Farwell, D., et al. (2000). How many people with heart failure are appropriate for biventricular resynchronization? European Heart Journal, 21(15), 1246–1250.CrossRefGoogle Scholar
  37. 37.
    Frouin, F., et al. (2003). FAMIS-A new tool for detecting left ventricular regional wall motion abnormalities: Clinical validation. Journal of the American College of Cardiology, 41(6), 452.CrossRefGoogle Scholar
  38. 38.
    Frouin, F., et al. (2004). Factor analysis of the left ventricle by echocardiography (FALVE): A new tool for detecting regional wall motion abnormalities. European Journal of Echocardiography, 5(5), 335–346.CrossRefGoogle Scholar
  39. 39.
    Galderisi, M., Cattaneo, F., & Mondillo, S. (2007). Doppler echocardiography and myocardial dyssynchrony: A practical update of old and new ultrasound technologies. Cardiovascular Ultrasound, 5(1), 28.CrossRefGoogle Scholar
  40. 40.
    Ganong, W. F., & Ganong, W. (1995). Review of medical physiology. Norwalk, CT: Appleton & Lange.zbMATHGoogle Scholar
  41. 41.
    Geyer, H., et al. (2010). Assessment of myocardial mechanics using speckle tracking echocardiography: Fundamentals and clinical applications. Journal of the American Society of Echocardiography, 23(4), 351–369.CrossRefGoogle Scholar
  42. 42.
    Hawkins, N. M., et al. (2009). Selecting patients for cardiac resynchronization therapy. Journal of the American College of Cardiology, 53(21), 1944–1959.CrossRefGoogle Scholar
  43. 43.
    Henneman, M. M., et al. (2006). Assessment of global and regional left ventricular function and volumes with 64-slice MSCT: A comparison with 2D echocardiography. Journal of Nuclear Cardiology, 13(4), 480–487.CrossRefGoogle Scholar
  44. 44.
    Hesse, B., et al. (2008). EANM/ESC guidelines for radionuclide imaging of cardiac function. European Journal of Nuclear Medicine and Molecular Imaging, 35(4), 851–885.CrossRefGoogle Scholar
  45. 45.
    Hoffmann, R., et al. (1996). Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. Journal of the American College of Cardiology, 27(2), 330–336.CrossRefGoogle Scholar
  46. 46.
    Hoffmann, R., et al. (1998). Standardized guidelines for the interpretation of dobutamine echocardiography reduce interinstitutional variance in interpretation. The American Journal of Cardiology, 82(12), 1520–1524.CrossRefGoogle Scholar
  47. 47.
    Hoffmann, R., et al. (2005). Assessment of systolic left ventricular function: A multi-centre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. European Heart Journal, 26(6), 607–616.CrossRefGoogle Scholar
  48. 48.
    Hosenpud, J. D., & Greenberg, B. H. (2007). Congestive heart failure. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
  49. 49.
    Jasaityte, R., & D’Hooge, J. (2010). Strain rate imaging: Fundamental principles and progress so far. Imaging in Medicine, 2(5), 547–563.CrossRefGoogle Scholar
  50. 50.
    Jiménez-Ángeles, L., et al. (2009). Factorial phase analysis of ventricular contraction using equilibrium radionuclide angiography images. Biomedical Signal Processing and Control, 4(2), 149–161.CrossRefGoogle Scholar
  51. 51.
    Jiménez-Ángeles, L., et al. (2013). Normality index of ventricular contraction based on a statistical model from FADS. Computational and Mathematical Methods in Medicine, 2013, 1–12.MathSciNetCrossRefGoogle Scholar
  52. 52.
    Klocke, F. J., et al. (2003). ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging – executive summary. Circulation, 108(11), 1404–1418.CrossRefGoogle Scholar
  53. 53.
    Knebel, F., et al. (2004). Tissue Doppler echocardiography and biventricular pacing in heart failure: Patient selection, procedural guidance, follow-up, quantification of success. Cardiovascular Ultrasound, 2(1), 17.CrossRefGoogle Scholar
  54. 54.
    Levin, R., et al. (1994). The Criteria Committee of the New York Heart Association. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels (9th ed., pp. 253–256). Boston, MA: Little, Brown & Co.Google Scholar
  55. 55.
    Lim, T. K., & Senior, R. (2006). Noninvasive modalities for the assessment of left ventricular function: All are equal but some are more equal than others. Journal of Nuclear Cardiology, 13(4), 445–449.CrossRefGoogle Scholar
  56. 56.
    Lomsky, M., et al. (2008). Normal limits for left ventricular ejection fraction and volumes determined by gated single photon emission computed tomography – A comparison between two quantification methods. Clinical Physiology and Functional Imaging, 28(3), 169–173.CrossRefGoogle Scholar
  57. 57.
    Malm, S., et al. (2004). Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: A comparison with magnetic resonance imaging. Journal of the American College of Cardiology, 44(5), 1030–1035.CrossRefGoogle Scholar
  58. 58.
    McKee, P. A., et al. (1971). The natural history of congestive heart failure: The Framingham Study. New England Journal of Medicine, 285(26), 1441–1446.CrossRefGoogle Scholar
  59. 59.
    Mor-Avi, V., et al. (2008). Real-time 3-dimensional echocardiographic quantification of left ventricular volumes. JACC: Cardiovascular Imaging, 1(4), 413–423.Google Scholar
  60. 60.
    Mukherjee, A., et al. (2015). Quantitative assessment of cardiac mechanical dyssynchrony and prediction of response to cardiac resynchronization therapy in patients with non-ischaemic dilated cardiomyopathy using equilibrium radionuclide angiography. Europace, 18(6), 851–857.CrossRefGoogle Scholar
  61. 61.
    Nattel, S., et al. (2007). Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiological Reviews, 87(2), 425–456.CrossRefGoogle Scholar
  62. 62.
    Nayak, K. S., et al. (2015). Cardiovascular magnetic resonance phase contrast imaging. Journal of Cardiovascular Magnetic Resonance, 17(1), 71.CrossRefGoogle Scholar
  63. 63.
    Nemes, A., et al. (2007). Usefulness of ultrasound contrast agent to improve image quality during real-time three-dimensional stress echocardiography. American Journal of Cardiology, 99(2), 275–278.CrossRefGoogle Scholar
  64. 64.
    Nichols, K., et al. (2000). Echocardiographic validation of gated SPECT ventricular function measurements. Journal of Nuclear Medicine, 41(8), 1308–1314.Google Scholar
  65. 65.
    Nygren, B.-M., et al. (2014). The aortic, mitral and tricuspid annuli and their velocities: A comparative echocardiographic study. Journal of Clinical and Experimental Cardiology, 05(08), 1–9.Google Scholar
  66. 66.
    Onishi, T., et al. (2013). Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: Comparison with echocardiographic speckle tracking. Journal of Cardiovascular Magnetic Resonance, 15(1), 95.MathSciNetCrossRefGoogle Scholar
  67. 67.
    Park, R. C., Little, W. C., & O’Rourke, R. A. (1985). Effect of alteration of left ventricular activation sequence on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. Circulation Research, 57(5), 706–717.CrossRefGoogle Scholar
  68. 68.
    Petrova, H. (2016). Some aspects related to the development, implementation and assessment of educational computer presentations. Chemistry, 25(4), 627–633.Google Scholar
  69. 69.
    Petrovic, M., et al. (2011). Prediction of a good response to cardiac resynchronization therapy in patients with severe dilated cardyomyopathy: Could conventional echocardiography be the answer after all? Echocardiography, 29(3), 267–275.CrossRefGoogle Scholar
  70. 70.
    Pfisterer, M. E., Battler, A., & Zaret, B. L. (1985). Range of normal values for left and right ventricular ejection fraction at rest and during exercise assessed by radionuclide angiocardiography. European Heart Journal, 6(8), 647–655.CrossRefGoogle Scholar
  71. 71.
    Prinzen, F. W., et al. (1990). Redistribution of myocardial fiber strain and blood flow by asynchronous activation. American Journal of Physiology-Heart and Circulatory Physiology, 259(2), H300–H308.CrossRefGoogle Scholar
  72. 72.
    Puente-Barragán, A., & Jiménez-Ángeles, L. (2009). Estudio de la función ventricular con ventriculografía radioisotópica en equilibrio (VRIE). In D. Bialostozky (Ed.), Imagenología no-invasiva cardiovascular clínica (pp. 175–187). Permanyer.Google Scholar
  73. 73.
    Redheuil, A. B., et al. (2007). Interobserver variability in assessing segmental function can be reduced by combining visual analysis of CMR cine sequences with corresponding parametric images of myocardial contraction. Journal of Cardiovascular Magnetic Resonance, 9(6), 863–872.CrossRefGoogle Scholar
  74. 74.
    Rojas Ordus, D. (2010). Análisis de sincronía de contracción cardiaca con imágenes VRIE-SPECT. Universidad Autónoma Metropolitana – Iztapalapa.Google Scholar
  75. 75.
    Rojas-Ordus, D., et al. (2010). Factor analysis of ventricular contraction using SPECT-ERNA images. In 32nd Annual International Conference of the IEEE EMBS (pp. 5732–5735). IEEE.Google Scholar
  76. 76.
    Santos-Díaz, A. (2011). Evaluación de la anormalidad en la contractilidad ventricular y la respuesta a la terapia de resincronización cardiaca. Universidad Autónoma Metropolitana – Iztapalapa.Google Scholar
  77. 77.
    Santos-Díaz, A., et al. (2017). Automated classification of severity in cardiac Dyssynchrony merging clinical data and mechanical descriptors. Computational and Mathematical Methods in Medicine, 2017, 1–9.CrossRefGoogle Scholar
  78. 78.
    Sassone, B., et al. (2018). Role of cardiovascular imaging in cardiac resynchronization therapy. Journal of Cardiovascular Medicine, 19(5), 211–222.CrossRefGoogle Scholar
  79. 79.
    Saxon, L. A., & Ellenbogen, K. A. (2003). Resynchronization therapy for the treatment of heart failure. Circulation, 108(9), 1044–1048.CrossRefGoogle Scholar
  80. 80.
    Schwartz, R. G., Jain, D., & Storozynsky, E. (2013). Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively. Journal of Nuclear Cardiology, 20(3), 443–464.CrossRefGoogle Scholar
  81. 81.
    Senni, M., et al. (1998). Congestive heart failure in the community: A study of all incident cases in Olmsted County, Minnesota, in 1991. Circulation, 98(21), 2282–2289.CrossRefGoogle Scholar
  82. 82.
    Shamim, W., et al. (1999). Intraventricular conduction delay: A prognostic marker in chronic heart failure. International Journal of Cardiology, 70(2), 171–178.CrossRefGoogle Scholar
  83. 83.
    Stevenson, W. G., et al. (2012). Indications for cardiac resynchronization therapy: 2011 update from the Heart Failure Society of America guideline committee. Journal of Cardiac Failure, 18(2), 94–106.CrossRefGoogle Scholar
  84. 84.
    Strickberger, S. A., et al. (2005). Patient selection for cardiac resynchronization therapy: From the Council on Clinical Cardiology Subcommittee on Electrocardiography and Arrhythmias and the Quality of Care and Outcomes Research Interdisciplinary Working Group, in collaboration with the H. Circulation, 111(16), 2146–2150.CrossRefGoogle Scholar
  85. 85.
    Suffoletto, M. S., et al. (2006). Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation, 113(7), 960–968.CrossRefGoogle Scholar
  86. 86.
    Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition (2nd ed.). Academic Press, USA.Google Scholar
  87. 87.
    Thompson, R. C., & Cullom, S. J. (2006). Issues regarding radiation dosage of cardiac nuclear and radiography procedures. Journal of Nuclear Cardiology, 13(1), 19–23.CrossRefGoogle Scholar
  88. 88.
    Tortoledo, F. A., et al. (1983). Quantification of left ventricular volumes by two-dimensional echocardiography: A simplified and accurate approach. Circulation, 67(3), 579–584.CrossRefGoogle Scholar
  89. 89.
    Tournoux, F., et al. (2015). Value of mechanical dyssynchrony as assessed by radionuclide ventriculography to predict the cardiac resynchronization therapy response. European Heart Journal – Cardiovascular Imaging, 17(11), 1250–1258.CrossRefGoogle Scholar
  90. 90.
    Tseng, W.-Y. I., Su, M.-Y. M., & Tseng, Y.-H. E. (2016). Introduction to cardiovascular magnetic resonance: Technical principles and clinical applications. Acta Cardiologica Sinica, 32, 129–144.Google Scholar
  91. 91.
    Vallejo, E., et al. (2000). Assessment of left ventricular ejection fraction with quantitative gated SPECT: Accuracy and correlation with first-pass radionuclide angiography. Journal of Nuclear Cardiology, 7(5), 461–470.CrossRefGoogle Scholar
  92. 92.
    Wackers, F. J. T. (2016). Equilibrium gated radionuclide angiocardiography: Its invention, rise, and decline and … comeback? Journal of Nuclear Cardiology, 23(3), 362–365.CrossRefGoogle Scholar
  93. 93.
    Wilcken, D. E. L. (2015). Physiology of the normal heart. Surgery (Oxford), 33(2), 43–46.CrossRefGoogle Scholar
  94. 94.
    Williams, K. A. (2005). A historical perspective on measurement of ventricular function with scintigraphic techniques: Part II – Ventricular function with gated techniques for blood pool and perfusion imaging. Journal of Nuclear Cardiology, 12(2), 208–215.CrossRefGoogle Scholar
  95. 95.
    Wu, V., et al. (2014). Evaluation of diastolic function by three-dimensional volume tracking of the mitral annulus with cardiovascular magnetic resonance: Comparison with tissue Doppler imaging. Journal of Cardiovascular Magnetic Resonance, 16(1), 71.CrossRefGoogle Scholar
  96. 96.
    Xiao, H. B., et al. (1996). Natural history of abnormal conduction and its relation to prognosis in patients with dilated cardiomyopathy. International Journal of Cardiology, 53(2), 163–170.CrossRefGoogle Scholar
  97. 97.
    Yu, C.-M., & Hayes, D. L. (2013). Cardiac resynchronization therapy: State of the art 2013. European Heart Journal, 34(19), 1396–1403.CrossRefGoogle Scholar
  98. 98.
    Yu, C.-M., et al. (2005). Predictors of response to cardiac resynchronization therapy (PROSPECT)–study design. American Heart Journal, 149(4), 600–605.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de Ingeniería en Sistemas BiomédicosUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Electrical Engineering DepartmentUniversidad Autónoma Metropolitana-IztapalapaMexico CityMexico
  3. 3.Departamento de MecatrónicaEscuela de Ingenieria y Ciencias, Tecnológico de Monterrey, Campus Ciudad de MéxicoMexico CityMexico

Personalised recommendations