Advertisement

Recognition of Nausea Patterns by Multichannel Electrogastrography

Chapter
  • 225 Downloads
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)

Abstract

Nausea is a common set of symptoms related to several underlying physiological causes, usually difficult to identify a priori. Detecting nausea before emesis (vomiting) is particularly important for patients who are still unconscious after surgery, because emesis may cause various life-threatening complications. Electrogastrography (EGG) is the cutaneous measurement of the electrical activity of the stomach sensed by electrodes placed on the abdomen of the patient. As the relationship between nausea and gastric dysrhythmias is not yet well understood, the study of electrogastrograms may generate information to relate these processes. Thus, the aim of this study was to evaluate the possibility of detecting the presence of nausea in chemotherapy patients. The method consists of acquiring signals using multichannel electrogastrograms, isolating the gastric motion information applying independent component analysis, and then processing the resulting signal to discriminate between normal function and nausea. Feature extraction, clustering, and selection yielded a classifier that discriminated between both classes. The performance of the classifiers was compared among different experiments which include the number of channels and the period of nausea observation (pre- and post-detection). The best classifier obtained 83.33% of accuracy discriminating 31 control and 29 nausea events, using only 4 EGG channels and 3 features: the dominant power, the dominant frequency, and the relationship between the maximum and the average power of the event.

Keywords

Nausea Multichannel electrogastrography Independent component analysis Support vector machines Chemotherapy patients 

Notes

Acknowledgments

The authors would like to thank the Research Unit of Universidad de La Frontera for financing this project and to Onda Corporation for providing the equipment necessary for this work.

References

  1. 1.
    AGA. American Gastroenterological Association. (2001). Medical position statement: Nausea and vomiting. Gastroenterology, 120, 261–262.CrossRefGoogle Scholar
  2. 2.
    Alvarez, W. C. (1922). The electrogastrogram and what it shows. JAMA, 78(15), 1116–1118.CrossRefGoogle Scholar
  3. 3.
    Babajide, O., & Familoni. (1994). Validity of the cutaneous electrogastrogram. In Electrography: Principles and applications (Vol. 1, pp. 103–125). New York: Raven Press.Google Scholar
  4. 4.
    Chacón, M., Curilem, G., Acuña, G., Defilippi, C., Madrid, A. M., & Jara, S. (2009). Detection of patients with functional dyspepsia using wavelet transform applied to their electrogastrograms. Brazilian Journal of Medical and Biological Research, 42(12), 1203–1209.CrossRefGoogle Scholar
  5. 5.
    Chang, Y. (2005). Electrogastrography: Basic knowledge, recording, processing and its clinical applications. Journal of Gastroenterology and Hepatology, 20, 502–516.CrossRefGoogle Scholar
  6. 6.
    Chen, B., Hu, S., Liu, B., Zhao, T., Li, B., Liu, Y., et al. (2015). Efficacy and safety of electroacupuncture with different acupoints for chemotherapy-induced nausea and vomiting: Study protocol for a randomized controlled trial. Trials, 16(1), 212.CrossRefGoogle Scholar
  7. 7.
    Chen, C., Hu, C., Lin, H., & Yi, C. (2006). Clinical utility of electrogastrography and the water load test in patients with upper gastrointestinal symptoms. Journal of Smooth Muscle Research, 42(5), 149–157.  https://doi.org/10.1540/jsmr.42.149.CrossRefGoogle Scholar
  8. 8.
    Chen, J. Z., & McCallum, R. W. (1994). Electrogastrographic parameters and their clinical significance. In Electrography: Principles and applications (Vol. 1, pp. 45–72). New York: Raven Press.Google Scholar
  9. 9.
    Chen, J. Z., & McCallum, R. W. (2000). Non-invasive feature based detection of delayed gastric emptyng in humans using neuronal networks. IEEE Transactions on Biomedical Engineering, 47, 409–412.CrossRefGoogle Scholar
  10. 10.
    Curilem, M., Chacón, M., Acuña, G., Ulloa, S., Defilippi, C., & Madrid, A. M. (2010). Comparison of artificial neural networks and support vector Machines for Feature Selection in Electrogastrography signal processing. Annual International IEEE EMBS Conference, 2010, 2774–2777.Google Scholar
  11. 11.
    DiBaise, J. K., Brand, R. E., Lyden, E., Tarantolo, S. R., & Quigley, E. M. M. (2001). Gastric myoelectrical activity and its relationship to the development of nausea and vomiting after intensive chemotherapy and autologous stem cell transplantation. American Journal of Gastroenterology, 96(10), 2873–2881.CrossRefGoogle Scholar
  12. 12.
    Guyon, I. (2003). Fast an introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.zbMATHGoogle Scholar
  13. 13.
    Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. (2006). Feature extraction, foundations and applications. In I. Guyon, S. Gunn, M. Nikravesh, & L. Zadeh (Eds.), Series studies in fuzziness and soft computing. Berlin, Germany: Physica-Verlag, Springer.Google Scholar
  14. 14.
    Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Taipei: Department of Computer Science, National Taiwan University.Google Scholar
  15. 15.
    Hutson, L. R., Ragsdale, S. A., & Vacula, B. B. (2019). Relation of improved postoperative nausea/vomiting quality metric to physician incentive pay. Baylor University Medical Center Proceedings, 32, 5.CrossRefGoogle Scholar
  16. 16.
    Hyvarinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analisis. Neuronal Computation, 9, 1483–1492.CrossRefGoogle Scholar
  17. 17.
    Imai, K., & Kitakoji, S. (2006). Gastric arrhythmia and nausea of motion sickness induced in healthy Japanese subjects viewing an optokinetic rotating drum. Journal of Physiological Sciences, 56(5), 341–345.CrossRefGoogle Scholar
  18. 18.
    James, C. J., & Hesse, C. W. (2005). Independent component analysis for biomedical signals. Physiological Measurement, 26(1), R15.CrossRefGoogle Scholar
  19. 19.
    Kara, S., Dirgenali, F., & Okkesim, S. (2006). Detection of gastric dysrhythmia using WT and ANN in diabetic gastroparesis patients. Computers in Biology and Medicine, 36(3), 276–290.CrossRefGoogle Scholar
  20. 20.
    Koch, K. L., & Robert, M. S. (1994). Electrographic data acquisition and Analysis Electrography: Principles and applications. Raven Press, 1, 31–44.Google Scholar
  21. 21.
    Koch, K. L., & Stern, R. M. (1994). Nausea and vomiting and gastric dysrhythmias. In Electrography: Principles and applications (Vol. 1, pp. 309–328). New York: Raven Press.Google Scholar
  22. 22.
    Komorowski, D. (2018). EGG DWPack: System for multi-channel electrogastrographic signals recording and analysis. Journal of Medical Systems, 42(11), 201.CrossRefGoogle Scholar
  23. 23.
    Kovac, A. L. (2018). Updates in the management of postoperative nausea and vomiting. Adv Anesth, 36(1), 81–97.  https://doi.org/10.1016/j.aan.2018.07.004.CrossRefGoogle Scholar
  24. 24.
    Kreis, M. E. (2006). Postoperative nausea and vomiting. Autonomic Neuroscience: Basic and Clinical, 129, 86–91.CrossRefGoogle Scholar
  25. 25.
    Lee, Y. Y., Kim, K. H., & Yom, Y. H. (2007). Predictive models for post operative nausea and vomiting in patients using patient controlled analgesia. The Journal of International Medical Research, 35, 497–507.CrossRefGoogle Scholar
  26. 26.
    Liang, H., & Lin, Z. (2001). Detection of delayed gastric emptying from electrogastrograms with support vector machine. IEEE Transactions on Biomedical Engineering, 48(5), 601–604.CrossRefGoogle Scholar
  27. 27.
    Lior, R., & Maimon, O. (2005). Clustering methods. In Data mining and knowledge discovery handbook (pp. 321–352). New York: Springer.zbMATHGoogle Scholar
  28. 28.
    Omer, E., McElmurray, L., Kedar, A., Hughes, M. G., Cacchione, R., & Abell, T. L. (2014). Proximal gastric measurements may predict clinical response in patients with nausea and vomiting undergoing temporary endoscopic gastric electrical stimulation. Gastroenterology, 146(5, Supplement 1), S-267.CrossRefGoogle Scholar
  29. 29.
    Peng, C., Qian, X., & Ye, D. (2007a). Electrogastrogram extraction using independent component analysis with references. Neural Computing and Applications, 16, 581–587.CrossRefGoogle Scholar
  30. 30.
    Peng, S. Y., Wu, K. C., Wang, J. J., Chuang, J. H., Peng, S. K., & Lai, Y. H. (2007b). Predicting postoperative nausea and vomiting with the application of an artificial neural network. British Journal of Anaesthesia, 98(1), 60–65.CrossRefGoogle Scholar
  31. 31.
    Prokešová, J., & Dolina, J. (2009). Clinical application of electrogastrography. Scripta Medica Facultatis Medicae Universitatis Brunensis Masarykianae, 82(4), 235–238.Google Scholar
  32. 32.
    Sinclair, D. R., Chung, F., & Mezei, G. (1999). Can postoperative nausea and vomiting be predicted? Anesthesiology, 91, 109–118.CrossRefGoogle Scholar
  33. 33.
    Smout, A. J. P. M., Jebbink, H. J. A., & Samsom, M. (1994). Acquisition and analysis of electrogastrographic data. In Electrography: Principles and applications (Vol. 1, pp. 3–28). New York: Raven Press.Google Scholar
  34. 34.
    Somarajan, S., Muszynski, N. D., Russell, A., Gorman, B., Acra, S., Cheng, L. K., & Bradshaw, L. A. (2016). Sa1717 high-density electrogastrogram identifies spatial dysrhythmias in adolescent patients with chronic idiopathic nausea: A preliminary study. Gastroenterology, 150(4, Supplement 1), S356.CrossRefGoogle Scholar
  35. 35.
    Stern, R. M., Koch, K. L., & Andrews, P. (2011). Nausea: Mechanisms and management. New York: Oxford University Press.Google Scholar
  36. 36.
    Vapnik, V. (1995). The nature of statistical learning theory (p. 188). New York: Springer.CrossRefGoogle Scholar
  37. 37.
    Yin, J., & Chen, J. D. Z. (2013). Electrogastrography: Methodology, validation and applications. Journal of Neurogastroenterology and Motility, 19(1), 5–17.CrossRefGoogle Scholar
  38. 38.
    Yu, S. N., & Chou, K. T. (2009). Selection of significant independent components for ECG beat classification. Journal Expert Systems with Applications, 36(2), 2088–2096.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centro de Física e Ingeniería para la Medicina (CFIM), Universidad de La FronteraTemucoChile
  2. 2.Departamento de Ingeniería EléctricaUniversidad de La FronteraTemucoChile
  3. 3.Hospital Regional Dr. Hernán Henríquez AravenaTemucoChile
  4. 4.Onda CorporationSunnyvaleUSA
  5. 5.Departamento de Ingeniería InformáticaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations