Images Analysis Method for the Detection of Chagas Parasite in Blood Image

Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)


Chagas disease is caused by the protozoan parasite Trypanosoma cruzi (T. cruzi) and represents a major public health problem in Latin America. The most widely used technique for determining the development stage of Chagas disease is visual microscopical evaluation of stained blood smears. However, this is a tedious and time-consuming task that requires a trained operator. In this work, a system for the automatic parasite detection in stained blood smears images is proposed. The system includes a microscope with a specific automated positioning stage, for holding and moving slides under the microscope; a computer for controlling the stage position; and a digital camera to acquire images through the microscope. Such an image was analyzed in order to detect the parasite by means of image processing techniques. Experimental results show that it is feasible to have an automated system for the detection of the Trypanosoma cruzi parasite.


Automatic detection Chagas diseases Image processing Microscope 


  1. 1.
    World Health Organization. (2019). Chagas disease (American trypanosomiasis) [Online]. Available at: Accessed 15 Jan 2019.Google Scholar
  2. 2.
    Prata, P. (2001). Clinical and epidemiological aspects of Chagas disease. The Lancet. Infectious Diseases, 1(2), 92–100.CrossRefGoogle Scholar
  3. 3.
    Hodo, C. L., Wilkerson, G. K., Birkner, E. C., Gray, S. B., & Hamer, S. A. (2018). Trypanosoma cruzi transmission among captive nonhuman primates, wildlife, and vectors. EcoHealth, 15, 426–436.CrossRefGoogle Scholar
  4. 4.
    Dumonteil, E. (1999). Update on Chagas disease in Mexico. Salud Púlica de México, 41(4), 322–327.Google Scholar
  5. 5.
    Fabrizio, M. C., Schweigmann, N. J., & Bartoloni, J. (2016). Analysis of the transmission of Trypanosoma cruzi infection through hosts and vectors. Parasitology, 143(9), 1168–1178.CrossRefGoogle Scholar
  6. 6.
    Browne, A. J., Guerra, C. A., Alves, R. V., da Costa, V. M., Wilson, A. L., Pigott, D. M., Hay, S. I., Lindsay, S. W., Golding, N., & Moyes, C. L. (2017). The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Scientific Data, 4(170050), 1–9.Google Scholar
  7. 7.
    Gomes, G., Almeida, A. B., Rosa, A. C., Araujo, P. F., & Teixeira, A. (2019). American trypanosomiasis and Chagas disease: Sexual transmission. International Journal of Infectious Diseases, 81, 81–84.CrossRefGoogle Scholar
  8. 8.
    Uc-Cetina, V., Brito-Loeza, C., & Ruiz-Piña, H. (2015). Chagas parasite detection in blood images using AdaBoost. Computational and Mathematical Methods in Medicine, ID 139681, 1–13.Google Scholar
  9. 9.
    Rassi, A., & Marin-Neto, J. A. (2010). Chagas disease. The Lancet, 375(9723), 1388–1402.CrossRefGoogle Scholar
  10. 10.
    Ruiz-Huerta, L., Caballero-Ruiz, A., Vega-Alvarado, L., Heredia-López, F., & Ruiz-Piña, H. (2012). Desarrollo de un sistema automatizado para la detección de parásitos en frotis sanguíneos. In SOMI XXVII: Congreso de Instrumentacion. Culiacán, Sinaloa, Mèxico, 29–31 Oct 2012.Google Scholar
  11. 11.
    Billmeyer F. W., & Saltzman M. (2nd Eds.). (1981). Principles of color technology. New York: Wiley-Interscience.Google Scholar
  12. 12.
    Vargas-Ordaz, E., Vega-Alvarado, L., Ruiz-Huerta, L., Caballero-Ruiz, A., Heredia-López, F., & Ruiz-Piña, H. (2013). Metodología para la detección en frotis sanguńieos del parásito causante de la enfermedad de Chagas. In SOMI XXVIII: Congreso de Instrumentacion. San Francisco de Campeche, Campeche, Mèxico, 28–31 Oct 2013.Google Scholar
  13. 13.
    Bradski, G., & Kaehler, A. (2nd Eds.). (2013). Learning OpenCV: Computer vision in C++ with the OpenCV library. Sebastopol: O’Reilly Media, Inc.Google Scholar
  14. 14.
    Pajares, G. (2nd Eds.). (2008). Visión por computador. México: Alfaomega.Google Scholar
  15. 15.
    Li, Z., Cheng, Y., Tang, K., Xu, Y., & Zhang, D. (2015). A salt & pepper noise filter based on local and global image information. Neurocomputing, 159, 172–185.CrossRefGoogle Scholar
  16. 16.
    Gonzalez, R. C., & Woods, R. E. (2nd Eds.). (2002). Digital image processing. New Jersey: Prentice-Hall.Google Scholar
  17. 17.
    Russ, J. C. (1st Eds.). (1992) The image processing Handbook. Boca Raton: CRC Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Instituto de Ciencias Aplicadas y TecnologíaUniversidad Nacional Autónoma de México (ICAT, UNAM)Ciudad de MéxicoMéxico
  2. 2.National Laboratory for Additive and Digital Manufacturing (MADiT)Coyoacán, Cd. MéxicoMéxico
  3. 3.Centro de Investigaciones Regionales Dr. Hideyo NoguchiUniversidad Autónoma de YucatánMérida, YucatánMéxico

Personalised recommendations