Skip to main content

Pattern Recognition Applied to the Analysis of Genomic Data and Its Association to Diseases

  • Chapter
  • First Online:
Pattern Recognition Techniques Applied to Biomedical Problems

Abstract

The analysis of genomic data has been used to generate information about genetic variants and expression patterns correlated with specific physical traits. In the last decades, these analyses have evolved toward analyzing thousands of entities at the same time. Moreover, these analyses have produced an enormous amount of biomedical literature reporting associations between genes and diseases. In this scenario, pattern recognition techniques have been truly useful, so a review of how these techniques have been applied is relevant. Thus, in this chapter we present a brief introduction to the high-throughput sequencing methodologies. Then, we describe the process of identification of genomic variants and genetic expression profiles that have been used for the diagnostic of diseases, followed by a general overview of the gene-disease association extraction from biomedical literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.

    Article  Google Scholar 

  2. Taub, F. E., DeLeo, J. M., & Thompson, B. E. (1983). Sequential comparative hybridizations analyzed by computerized image processing can identify and quantitate regulated RNAs. DNA, 2(4), 309–327.

    Article  Google Scholar 

  3. Churchill, G. A. (2002). Fundamentals of experimental design for cDNA microarrays. Nature Genetics, 32, 490.

    Article  Google Scholar 

  4. International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  Google Scholar 

  5. Shendure, J., Balasubramanian, S., Church, G. M., Gilbert, W., Rogers, J., Schloss, J. A., & Waterston, R. H. (2017). Dna sequencing at 40: Past, present and future. Nature, 550(7676), 345.

    Article  Google Scholar 

  6. Zhang, J., Chiodini, R., Badr, A., & Zhang, G. (2011). The impact of next-generation sequencing on genomics. Journal of Genetics and Genomics, 38(3), 95–109.

    Article  Google Scholar 

  7. Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333.

    Article  Google Scholar 

  8. Drmanac, R., Sparks, A. B., Callow, M. J., Halpern, A. L., Burns, N. L., Kermani, B. G., Carnevali, P., Nazarenko, I., Nilsen, G. B., Yeung, G., et al. (2010). Human genome sequencing using unchained base reads on self-assembling dna nanoarrays. Science, 327(5961), 78–81.

    Article  Google Scholar 

  9. Valouev, A., Ichikawa, J., Tonthat, T., Stuart, J., Ranade, S., Peckham, H., Zeng, K., Malek, J. A., Costa, G., McKernan, K., et al. (2008). A high-resolution, nucleosome position map of C. Elegans reveals a lack of universal sequence-dictated positioning. Genome Research, 18(7), 1051–1063.

    Article  Google Scholar 

  10. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y.-J., Chen, Z., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057), 376.

    Article  Google Scholar 

  11. Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., Leamon, J. H., Johnson, K., Milgrew, M. J., Edwards, M., et al. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475(7356), 348.

    Article  Google Scholar 

  12. Clarke, J., Wu, H.-C., Jayasinghe, L., Patel, A., Reid, S., & Bayley, H. (2009). Continuous base identification for single-molecule nanopore dna sequencing. Nature Nanotechnology, 4(4), 265.

    Article  Google Scholar 

  13. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al. (2009). Real-time dna sequencing from single polymerase molecules. Science, 323(5910), 133–138.

    Article  Google Scholar 

  14. Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., Iyer, R., Schatz, M. C., Sinha, S., & Robinson, G. E. (2015). Big data: Astronomical or genomical? PLoS Biology, 13(7), e1002195.

    Article  Google Scholar 

  15. Consortium, G. P. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061.

    Article  Google Scholar 

  16. McVean, G., Altshuler (Co-Chair), D., Durbin (Co-Chair), R. et al. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65.

    Google Scholar 

  17. Nielsen, R., Paul, J. S., Albrechtsen, A., & Song, Y. S. (2011). Genotype and SNP calling from next-generation sequencing data. Nature Reviews Genetics, 12(6), 443.

    Article  Google Scholar 

  18. DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., Del Angel, G., Rivas, M. A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping using next-generation dna sequencing data. Nature Genetics, 43(5), 491.

    Article  Google Scholar 

  19. Schbath, S., Martin, V., Zytnicki, M., Fayolle, J., Loux, V., & Gibrat, J.-F. (2012). Mapping reads on a genomic sequence: An algorithmic overview and a practical comparative analysis. Journal of Computational Biology, 19(6), 796–813.

    Article  MathSciNet  Google Scholar 

  20. Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short dna sequences to the human genome. Genome Biology, 10(3), R25.

    Article  Google Scholar 

  21. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357.

    Article  Google Scholar 

  22. Lunter, G., & Goodson, M. (2011). Stampy: A statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Research, 21(6), 936–939.

    Article  Google Scholar 

  23. Ning, Z., Cox, A. J., & Mullikin, J. C. (2001). SSAHA: A fast search method for large dna databases. Genome Research, 11(10), 1725–1729.

    Article  Google Scholar 

  24. Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., & Wang, J. (2009). Soap2: An improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966–1967.

    Article  Google Scholar 

  25. Jiang, H., & Wong, W. H. (2008). SeqMap: Mapping massive amount of oligonucleotides to the genome. Bioinformatics, 24(20), 2395–2396.

    Article  Google Scholar 

  26. David, M., Dzamba, M., Lister, D., Ilie, L., & Brudno, M. (2011). Shrimp2: Sensitive yet practical short read mapping. Bioinformatics, 27(7), 1011–1012.

    Article  Google Scholar 

  27. Rizk, G., & Lavenier, D. (2010). Gassst: Global alignment short sequence search tool. Bioinformatics, 26(20), 2534–2540.

    Article  Google Scholar 

  28. Rivals, E., Salmela, L., Kiiskinen, P., Kalsi, P., & Tarhio, J. (2009). Mpscan: Fast localisation of multiple reads in genomes (In: Salzberg S.L., Warnow T. (eds) algorithms in bioinformatics. WABI 2009. Pp. 246–260. Lecture notes in computer science, vol 5724). Berlin, Heidelberg: Springer.

    Google Scholar 

  29. Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with burrows–wheeler transform. Bioinformatics, 26(5), 589–595.

    Article  Google Scholar 

  30. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The sequence alignment/map format and samtools. Bioinformatics, 25(16), 2078–2079.

    Article  Google Scholar 

  31. Li, H. (2011). A statistical framework for snp calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27(21), 2987–2993.

    Article  Google Scholar 

  32. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The genome analysis toolkit: A mapreduce framework for analyzing next-generation dna sequencing data. Genome Research, 20(9), 1297–1303.

    Article  Google Scholar 

  33. Narzisi, G., O’rawe, J. A., Iossifov, I., Fang, H., Lee, Y.-h., Wang, Z., Wu, Y., Lyon, G. J., Wigler, M., & Schatz, M. C. (2014). Accurate de novo and transmitted indel detection in exome-capture data using microassembly. Nature Methods, 11(10), 1033.

    Google Scholar 

  34. Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998). Base-calling of automated sequencer traces usingphred. i. accuracy assessment. Genome Research, 8(3), 175–185.

    Article  Google Scholar 

  35. Ross, M. G., Russ, C., Costello, M., Hollinger, A., Lennon, N. J., Hegarty, R., Nusbaum, C., & Jaffe, D. B. (2013). Characterizing and measuring bias in sequence data. Genome Biology, 14(5), R51.

    Article  Google Scholar 

  36. Harismendy, O., Ng, P. C., Strausberg, R. L., Wang, X., Stockwell, T. B., Beeson, K. Y., Schork, N. J., Murray, S. S., Topol, E. J., Levy, S., et al. (2009). Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology, 10(3), R32.

    Article  Google Scholar 

  37. Wang, J., Wang, W., Li, R., Li, Y., Tian, G., Goodman, L., Fan, W., Zhang, J., Li, J., Zhang, J., et al. (2008). The diploid genome sequence of an asian individual. Nature, 456(7218), 60.

    Article  Google Scholar 

  38. Li, R., Li, Y., Fang, X., Yang, H., Wang, J., Kristiansen, K., & Wang, J. (2009). Snp detection for massively parallel whole-genome resequencing. Genome Research, 19(6), 1124–1132.

    Article  Google Scholar 

  39. Martin, E. R., Kinnamon, D., Schmidt, M. A., Powell, E., Zuchner, S., & Morris, R. (2010). Seqem: An adaptive genotype-calling approach for next-generation sequencing studies. Bioinformatics, 26(22), 2803–2810.

    Article  Google Scholar 

  40. Compeau, P. E., Pevzner, P. A., & Tesler, G. (2011). How to apply de Bruijn graphs to genome assembly. Nature Biotechnology, 29(11), 987.

    Article  Google Scholar 

  41. Kimura, K., & Koike, A. (2015). Ultrafast snp analysis using the burrows–wheeler transform of short-read data. Bioinformatics, 31(10), 1577–1583.

    Article  Google Scholar 

  42. Pajuste, F.-D., Kaplinski, L., Möls, M., Puurand, T., Lepamets, M., & Remm, M. (2017). Fastgt: An alignment-free method for calling common SNVs directly from raw sequencing reads. Scientific Reports, 7(1), 2537.

    Article  Google Scholar 

  43. Audano, P., Ravishankar, S., & Vannberg, F. (2017). Mapping-free variant calling using haplotype reconstruction from k-mer frequencies. Bioinformatics, 10, 1659–1665.

    Google Scholar 

  44. Gómez-Romero, L., Palacios-Flores, K., Reyes, J., García, D., Boege, M., Dávila, G., Flores, M., Schatz, M. C., & Palacios, R. (2018). Precise detection of de novo single nucleotide variants in human genomes. Proceedings of the National Academy of Sciences, 115(21), 5516–5521.

    Article  Google Scholar 

  45. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550.

    Article  Google Scholar 

  46. Patti, M. E., Butte, A. J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., Miyazaki, Y., Kohane, I., Costello, M., Saccone, R., et al. (2003). Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proceedings of the National Academy of Sciences, 100(14), 8466–8471.

    Article  Google Scholar 

  47. Petersen, K. F., Dufour, S., Befroy, D., Garcia, R., & Shulman, G. I. (2004). Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. New England Journal of Medicine, 350(7), 664–671.

    Article  Google Scholar 

  48. Rubin, E. (June 2006). Circumventing the cut-off for enrichment analysis. Briefings in Bioinformatics, 7(2), 202–203. https://doi.org/10.1093/bib/bbl013.

    Article  Google Scholar 

  49. Shi, J., & Walker, M. G. (2007). Gene set enrichment analysis (GSEA) for interpreting gene expression profiles. Current Bioinformatics, 2(2), 133–137.

    Article  Google Scholar 

  50. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.

    Article  Google Scholar 

  51. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140.

    Article  Google Scholar 

  52. Tarazona, S., García-Alcalde, F., Dopazo, J., Ferrer, A., & Conesa, A. (2011). Differential expression in rna-seq: A matter of depth. Genome Research, 21(12), 2213–2223.

    Article  Google Scholar 

  53. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47–e47.

    Article  Google Scholar 

  54. Jiménez-Jacinto, V., Sánchez-Flores, A., & Vega-Alvarado, L. (2019). Integrative differential expression analysis for multiple experiments (ideamex): A web server tool for integrated rna-seq data analysis. Frontiers in Genetics, 10, 279.

    Article  Google Scholar 

  55. Cai, L., Huang, H., Blackshaw, S., Liu, J. S., Cepko, C., & Wong, W. H. (2004). Clustering analysis of sage data using a poisson approach. Genome Biology, 5(7), R51.

    Article  Google Scholar 

  56. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254.

    Article  MATH  Google Scholar 

  57. Hartigan, J. A. (1975). Clustering algorithms. New York: John Wiley & Sons, Inc.

    MATH  Google Scholar 

  58. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., & Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences, 96(6), 2907–2912.

    Article  Google Scholar 

  59. Banfield, J. D., & Raftery, A. E. (1993). Model-based gaussian and non-gaussian clustering. Biometrics, 49, 803–821.

    Article  MathSciNet  MATH  Google Scholar 

  60. McLachlan, Geoffrey J., Basford, & Kaye E. (1988). “Mixture models : inference and applications to clustering", New York, United States: Marcel Dekker. Vol 84. P. 253 p : ill.

    Google Scholar 

  61. Lin, X., Afsari, B., Marchionni, L., Cope, L., Parmigiani, G., Naiman, D., & Geman, D. (2009). The ordering of expression among a few genes can provide simple cancer biomarkers and signal brca1 mutations. BMC Bioinformatics, 10(1), 256.

    Article  Google Scholar 

  62. Hwang, B., Lee, J. H., & Bang, D. (2018). Single-cell rna sequencing technologies and bioinformatics pipelines. Experimental & Molecular Medicine, 50(8), 96.

    Article  Google Scholar 

  63. Lopez, R., Wang, R., & Seelig, G. (2018). A molecular multi-gene classifier for disease diagnostics. Nature Chemistry, 10(7), 746–754.

    Article  Google Scholar 

  64. Huang, C.-C., & Lu, Z. (2016). Community challenges in biomedical text mining over 10 years: Success, failure and the future, Briefings in Bioinformatics, 17(1), 132–44.

    Article  Google Scholar 

  65. Ananiadou, S., Thompson, P., Nawaz, R., McNaught, J., & Kell, D. B. (2014). Event-based text mining for biology and functional genomics. Briefings in Functional Genomics, 14(3), 213–230.

    Article  Google Scholar 

  66. Weiss, S. M., Indurkhya, N., Zhang, T., & Damerau, F. (2005). Text mining: Predictive methods for analyzing unstructured information. Publisher Springer-Verlag New York.

    Book  MATH  Google Scholar 

  67. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  68. Ananiadou, S., & McNaught, J., Text mining for biology and biomedicine. London: Artech House (2006).

    Google Scholar 

  69. Liu, F., Chen, J., Jagannatha, A. N., & Yu, H. (2016). Learning for biomedical information extraction: Methodological review of recent advances. CoRR, abs/1606.07993.

    Google Scholar 

  70. Cho, H., Choi, W., & Lee, H. (2017). A method for named entity normalization in biomedical articles: Application to diseases and plants. BMC Bioinformatics, 18(1), 451.

    Article  Google Scholar 

  71. Basaldella, M., Furrer, L., Tasso, C., & Rinaldi, F. (2017). Entity recognition in the biomedical domain using a hybrid approach. Journal of Biomedical Semantics, 8(1), 51.

    Article  Google Scholar 

  72. Vanegas, J. A., Matos, S., González, F., & Oliveira, J. L. (2015). An overview of biomolecular event extraction from scientific documents. Computational and mathematical methods in medicine, Volume, 2015., Article ID 571381, 1–19. https://doi.org/10.1155/2015/571381

    Google Scholar 

  73. Chaix, E., Dubreucq, B., Fatihi, A., Valsamou, D., Bossy, R., Ba, M., Delėger, L., Zweigenbaum, P., Bessieres, P., Lepiniec, L., et al. (2016). Overview of the regulatory network of plant seed development (SeeDev) task at the BioNLP shared task 2016. In Proceedings of the 4th BioNLP Shared Task Workshop (pp. 1–11). ACL.

    Google Scholar 

  74. Björne, J., & Salakoski, T. (2018). Biomedical event extraction using convolutional neural networks and dependency parsing. In Proceedings of the BioNLP 2018 workshop (pp. 98–108).

    Google Scholar 

  75. Singh-Blom, U. M., Natarajan, N., Tewari, A., Woods, J. O., Dhillon, I. S., & Marcotte, E. M. (2013). Prediction and validation of gene-disease associations using methods inspired by social network analyses. PloS One, 8(5), e58977.

    Article  Google Scholar 

  76. Chang, J. T., & Altman, R. B. (2004). Extracting and characterizing gene–drug relationships from the literature. Pharmacogenetics and Genomics, 14(9), 577–586.

    Article  Google Scholar 

  77. Pletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J. X., & Jensen, L. J. (2015). Diseases: Text mining and data integration of disease-gene associations. Methods, 74, 83–89.

    Article  Google Scholar 

  78. Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., Von Mering, C., et al. (2012). String v9. 1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research, 41(D1), D808–D815.

    Article  Google Scholar 

  79. Tsuruoka, Y., Miwa, M., Hamamoto, K., Tsujii, J., & Ananiadou, S. (2011). Discovering and visualizing indirect associations between biomedical concepts. Bioinformatics, 27, i111–i119, 06.

    Google Scholar 

  80. Mahmood, A. A., Wu, T.-J., Mazumder, R., & Vijay-Shanker, K. (2016). Dimex: A text mining system for mutation-disease association extraction. PloS One, 11(4), e0152725.

    Article  Google Scholar 

  81. Rindflesch, T. C., Libbus, B., Hristovski, D., Aronson, A. R., & Kilicoglu, H. (2003). Semantic relations asserting the etiology of genetic diseases. In AMIA Annual Symposium Proceedings (Vol. 2003, p. 554). American Medical Informatics Association.

    Google Scholar 

  82. Masseroli, M., Kilicoglu, H., Lang, F.-M., & Rindflesch, T. C. (2006). Argument-predicate distance as a filter for enhancing precision in extracting predications on the genetic etiology of disease. BMC Bioinformatics, 7(1), 291.

    Article  Google Scholar 

  83. Greco, I., Day, N., Riddoch-Contreras, J., Reed, J., Soininen, H., Kłoszewska, I., Tsolaki, M., Vellas, B., Spenger, C., Mecocci, P., Wahlund, L.-O., Simmons, A., Barnes, J., & Lovestone, S. (2012). Alzheimer’s disease biomarker discovery using in silico literature mining and clinical validation. Journal of Translational Medicine, 10, 217.

    Article  Google Scholar 

  84. Verspoor, K. M., Heo, G. E., Kang, K. Y., & Song, M. (2016). Establishing a baseline for literature mining human genetic variants and their relationships to disease cohorts. BMC Medical Informatics and Decision Making, 16(1), 68.

    Article  Google Scholar 

  85. Bundschus, M., Dejori, M., Stetter, M., Tresp, V., & Kriegel, H.-P. (2008). Extraction of semantic biomedical relations from text using conditional random fields. BMC Bioinformatics, 9(1), 207.

    Article  Google Scholar 

  86. Björne, J., Heimonen, J., Ginter, F., Airola, A., Pahikkala, T., & Salakoski, T. (2009). Extracting complex biological events with rich graph-based feature sets. In Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing: Shared Task (pp. 10–18). Association for Computational Linguistics.

    Google Scholar 

  87. Liu, H., Hunter, L., Kešelj, V., & Verspoor, K. (2013). Approximate subgraph matching-based literature mining for biomedical events and relations. PLoS One, 8(4), e60954.

    Article  Google Scholar 

  88. Bravo, À., Piñero, J., Queralt-Rosinach, N., Rautschka, M., & Furlong, L. I. (2015). Extraction of relations between genes and diseases from text and large-scale data analysis: Implications for translational research. BMC Bioinformatics, 16(1), 55.

    Article  Google Scholar 

  89. Giuliano, C., Lavelli, A., & Romano, L. (2006). Exploiting shallow linguistic information for relation extraction from biomedical literature. In 11th Conference of the European Chapter of the Association for Computational Linguistics.

    Google Scholar 

  90. Kim, S., Yoon, J., & Yang, J. (2007). Kernel approaches for genic interaction extraction. Bioinformatics, 24(1), 118–126.

    Article  Google Scholar 

  91. Singhal, A., Simmons, M., & Lu, Z. (2016). Text mining for precision medicine: Automating disease-mutation relationship extraction from biomedical literature. Journal of the American Medical Informatics Association, 23(4), 766–772.

    Article  Google Scholar 

  92. Thompson, P., & Ananiadou, S. (2017). Extracting gene-disease relations from text to support biomarker discovery. In Proceedings of the 2017 International Conference on Digital Health (pp. 180–189). ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Jiménez-Jacinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiménez-Jacinto, V., Gómez-Romero, L., Méndez-Cruz, CF. (2020). Pattern Recognition Applied to the Analysis of Genomic Data and Its Association to Diseases. In: Ortiz-Posadas, M. (eds) Pattern Recognition Techniques Applied to Biomedical Problems. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-030-38021-2_2

Download citation

Publish with us

Policies and ethics