The Classification of Independent Components for Biomedical Signal Denoising: Two Case Studies

Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)


This chapter presents two experiences on the recovery of biomedical signals of interest from noisy datasets, i.e., the extraction of the fetal phonocardiogram from the single-channel abdominal phonogram and the recovery of the Long Latency Auditory Evoked Potential from the multichannel EEG (in children with a cochlear implant). These by implementing denoising strategies based on (1) the separation of components statistically independent by using Independent Component Analysis (ICA) and, of especial interest in this chapter, (2) the classification of the components of interest by taking advantage of properties such as temporal structure, frequency content, or temporal and spatial location. Results of these two case studies are presented on real datasets, where either focused (1) on rhythmic physiological events such as the fetal heart sounds or (2) on spatially localized events like the cochlear implant artifact, the classification stage has been fundamental on the performance of the denoising process and thus, on the quality of the retrieved signals.


Blind source separation Cochlear implant artifact Fetal heart rate Independent component analysis TDSep 


  1. 1.
    Hyvärinen, A. (2013). Independent component analysis: Recent advances subject areas. Philosophical Transactions of the Royal Society A, 371(20110534), 1–19.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Stone, J. V. (2004). Independent component analysis: A tutorial introduction. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  3. 3.
    Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.CrossRefGoogle Scholar
  4. 4.
    Vincent, E., Araki, S., Theis, F., & Nolte, G. (2012). The signal separation evaluation campaign (2007–2010): Achievements and remaining challenges. Signal Processing, 92(8), 1928–1936.CrossRefGoogle Scholar
  5. 5.
    James, C. J., & Hesse, C. W. (2005). Independent component analysis for biomedical signals. Physiological Measurement, 26(1), R15–R39.CrossRefGoogle Scholar
  6. 6.
    Tharwat, A. (2018). Independent component analysis: An introduction. Applied Computing Informatics, In Press, 1–15.Google Scholar
  7. 7.
    Hyvärinen, A. (1999). Survey on independent component analysis. Neural Computation Survey, 2, 94–128.Google Scholar
  8. 8.
    Ejaz, M. (2008). A framework for implementing independent component analysis algorithms. Department of Electrical & Computer Engineering, Florida State University.Google Scholar
  9. 9.
    Jung, T., Makeig, S., Lee, T., Mckeown, M. J., Brown, G., Bell, A. J., & Sejnowski, T. J. (2000). Independent component analysis of biomedical signals. In: 2nd international workshop on independent component analysis and blind signal separation, no. 1 (pp. 633–644).Google Scholar
  10. 10.
    Klemm, M., Haueisen, J., & Ivanova, G. (2009). Independent component analysis: Comparison of algorithms for the investigation of surface electrical brain activity. Medical & Biological Engineering & Computing, 47(4), 413–423.CrossRefGoogle Scholar
  11. 11.
    Kuzilek, J. (2013). Independent component analysis: Applications in ECG signal processing. Prague: Department of Cybernetics, Czech Technical University.Google Scholar
  12. 12.
    Staudenmann, D., & Daffertshofer, A. (2007). Independent component analysis of high-density electromyography in muscle force estimation. IEEE Transactions on Biomedical Engineering, 54(4), 751–754.CrossRefGoogle Scholar
  13. 13.
    Hild, K. E., Alleva, G., Nagarajan, S., & Comani, S. (2007). Performance comparison of six independent components analysis algorithms for fetal signal extraction from real fMCG data. Physics in Medicine and Biology, 52(2), 449–462.CrossRefGoogle Scholar
  14. 14.
    Comani, S., & Alleva, G. (2007). Fetal cardiac time intervals estimated on fetal magnetocardiograms: Single cycle analysis versus average beat inspection. Physiological Measurement, 28(1), 49–60.CrossRefGoogle Scholar
  15. 15.
    Cao, J., Murata, N., Amari, S., Cichocki, A., & Takeda, T. (2003). A robust approach to independent component analysis of signals with high-level noise measurements. IEEE Transactions on Neural Networks, 14(3), 631–645.CrossRefGoogle Scholar
  16. 16.
    Wübbeler, G., Ziehe, A., Mackert, B. M., Müller, K. R., Trahms, L., & Curio, G. (2000). Independent component analysis of noninvasively recorded cortical magnetic DC-fields in humans. IEEE Transactions on Biomedical Engineering, 47(5), 594–599.CrossRefGoogle Scholar
  17. 17.
    Jiménez-González, A., & James, C. J. (2009). Extracting sources from noisy abdominal phonograms: A single-channel blind source separation method. Medical & Biological Engineering & Computing, 47(6), 655–664.CrossRefGoogle Scholar
  18. 18.
    Jimenez-Gonzalez, A., & James, C. J. (2008). Blind source separation to extract foetal heart sounds from noisy abdominal phonograms: A single channel method. In: 4th IET international conference advances medical, signal information processing (MEDSIP 2008) (pp. 114–118).Google Scholar
  19. 19.
    Jimenez-Gonzalez, A., & James, C. (2008). Source separation of foetal heart sounds and maternal activity from single-channel phonograms: A temporal independent component analysis approach. Computers in Cardiology, 2008(Md), 949–952.Google Scholar
  20. 20.
    Jiménez-González, A., & James, C. J. (2013). Blind separation of multiple physiological sources from a single-channel recording: A preprocessing approach for antenatal surveillances. IX International Seminar on Medical Information Processing and Analysis, 8922, 1–11.Google Scholar
  21. 21.
    Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36, 287–314.zbMATHCrossRefGoogle Scholar
  22. 22.
    Cardoso, J.-F. (2009). Blind signal separation: Statistical principles. Proceedings of the IEEE, 86(10), 2009–2025.CrossRefGoogle Scholar
  23. 23.
    Amari, S., Cichocki, A., & Yang, H. H. (1989). A new learning algorithm for blind signal separation. San Mateo: Morgan Kaufmann Publishers.Google Scholar
  24. 24.
    Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent Componet analysis. Neural Computation, 9, 1483–1942.CrossRefGoogle Scholar
  25. 25.
    Bell, A. J., & Sejnowski, T. J. (1995). An information-maximisation approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.CrossRefGoogle Scholar
  26. 26.
    Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended Infomax algorithm for mixed Subgaussian and Supergaussian sources. Neural Computation, 11(2), 417–441.CrossRefGoogle Scholar
  27. 27.
    Ziehe, A., & Müller, K.-R. (1998). TDSEP – an efficient algorithm for blind separation using time structure. In L. Niklassion, M. Boden, & G. Ziemke (Eds.), Proceedings international conference artificial neural networks (pp. 675–680). Berlin: Springer.Google Scholar
  28. 28.
    Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.CrossRefGoogle Scholar
  29. 29.
    Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.CrossRefGoogle Scholar
  30. 30.
    Cardoso, J., & Souloumiac, A. (1993). Blind beanforming for non -Gaussian signals. IEE Proceedings F-Radar and Signal Processing, 140(6), 362–370.CrossRefGoogle Scholar
  31. 31.
    Meinecke, F., Ziehe, A., Kawanabe, M., & Muller, K. R. (2002). Resampling approach to estimate the stability of one-dimensional or multidimensional independent components. IEEE Transactions on Biomedical Engineering, 49(12), 1514–1524.CrossRefGoogle Scholar
  32. 32.
    Davies, M., & James, C. (2007). Source separation using single channel ICA. Signal Processing, 87(8), 1819–1832.zbMATHCrossRefGoogle Scholar
  33. 33.
    Acharyya, R., Scott, N. L., & Teal, P. (2009). Non-invasive foetal heartbeat rate extraction from an underdetermined single signal. Health (Irvine, California), 01(02), 111–116.Google Scholar
  34. 34.
    Kovács, F., Horváth, C., Balogh, A. T., & Hosszú, G. (2011). Fetal phonocardiography--past and future possibilities. Computer Methods and Programs in Biomedicine, 104(1), 19–25.CrossRefGoogle Scholar
  35. 35.
    Chourasia, V. S., Tiwari, A. K., & Gangopadhyay, R. (2014). A novel approach for phonocardiographic signals processing to make possible fetal heart rate evaluations. Digital Signal Processing, 30, 165.CrossRefGoogle Scholar
  36. 36.
    Várady, P., Wildt, L., Benyó, Z., & Hein, A. (2003). An advanced method in fetal phonocardiography. Computer Methods and Programs in Biomedicine, 71(3), 283–296.CrossRefGoogle Scholar
  37. 37.
    Ruffo, M., Cesarelli, M., Romano, M., Bifulco, P., & Fratini, a. (2010). An algorithm for FHR estimation from foetal phonocardiographic signals. Biomedical Signal Processing and Control, 5(2), 131–141.CrossRefGoogle Scholar
  38. 38.
    Mittra, A. K., & Choudhari, N. K. (2009). Development of a low cost fetal heart sound monitoring system for home care application. Journal of Biomedical Science and Engineering, 2(6), 380–389.CrossRefGoogle Scholar
  39. 39.
    Jimenez-Gonzalez, A. (2010). Antenatal foetal monitoring through abdominal phonogram recordings: A single-channel independent component analysis approach. Institute of Sound and Vibration Research, University of Southampton.Google Scholar
  40. 40.
    Broomhead, D. S., & King, G. P. (1986). Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena, 20(2–3), 217–236.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Holburn, D., & Rowsell, T. (1989). Real time analysis of fetal phonography signals using the TMS320. In: Biomedical applications of digital signal processing, IEE colloquium on, 1989 (pp. 7–1).Google Scholar
  42. 42.
    Talbert, D., Davies, W. L., Johnson, F., Abraham, N., Colley, N., & Southall, D. P. (1986). Wide Bandwidlt fetal phonography using a sensor matched to the compliance of the Mother’s Abdominal Wall. Biomedical Engineering IEEE Transactions, BME-33(2), 175–181.CrossRefGoogle Scholar
  43. 43.
    Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483–1492.CrossRefGoogle Scholar
  44. 44.
    Jiménez-González, A., & James, C. J. (2010). Time-structure based reconstruction of physiological independent sources extracted from noisy abdominal phonograms. IEEE Transactions on Biomedical Engineering, 57(9), 2322–2330.CrossRefGoogle Scholar
  45. 45.
    Jiménez-González, A., & James, C. J. (2012). On the interpretation of the independent components underlying the abdominal phonogram: A study of their physiological relevance. Physiological Measurement, 33(2), 297–314.CrossRefGoogle Scholar
  46. 46.
    Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. A. (2001). Analysis of time series structure: SSA and related techniques. Boca Raton: Chapman & Hall/CRC.zbMATHCrossRefGoogle Scholar
  47. 47.
    Guijarro-Berdiñas, B., Alonso-Betanzos, A., & Fontenla-Romero, O. (2002). Intelligent analysis and pattern recognition in cardiotocographic signals using a tightly coupled hybrid system. Artificial Intelligence, 136(1), 1–27.zbMATHCrossRefGoogle Scholar
  48. 48.
    Zuckerwar, A. J., Pretlow, R. A., Stoughton, J. W., & Baker, D. A. (1993). Development of a piezopolymer pressure sensor for a portable fetal heart rate monitor. Biomedical Engineering IEEE Transactions, 40(9), 963–969.CrossRefGoogle Scholar
  49. 49.
    Ruffo, M., Cesarelli, M., Romano, M., Bifulco, P., & Fratini, A. (2010). A simulating software of fetal phonocardiographic signals. In: Information technology and applications in biomedicine (ITAB), 2010 10th IEEE international conference on (pp. 1–4).Google Scholar
  50. 50.
    Jiménez-González, A., & James, C. J. (2013). Antenatal surveillance through estimates of the sources underlying the abdominal phonogram: A preliminary study. Physiological Measurement, 1041, 1041–1061.CrossRefGoogle Scholar
  51. 51.
    Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. a., Johnson, R., Miller, G. a., Ritter, W., Ruchkin, D. S., Rugg, M. D., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37(2), 127–152.CrossRefGoogle Scholar
  52. 52.
    Jung, T., Humphries, C., Lee, T., Makeig, S., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (1998). Extended ICA removes artifacts from electroencephalographic recordings. Advances in Neural Information Processing Systems, 10, 894–900.Google Scholar
  53. 53.
    Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.CrossRefGoogle Scholar
  54. 54.
    Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34(4), 1443–1449.CrossRefGoogle Scholar
  55. 55.
    Campos Viola, F., Thorne, J., Edmonds, B., Schneider, T., Eichele, T., & Debener, S. (2009). Semi-automatic identification of independent components representing EEG artifact. Clinical Neurophysiology, 120(5), 868–877.CrossRefGoogle Scholar
  56. 56.
    Castañeda-Villa, N., & James, C. J. (2011). Independent component analysis for auditory evoked potentials and cochlear implant artifact estimation. IEEE Transactions on Biomedical Engineering, 58(2), 348–354.CrossRefGoogle Scholar
  57. 57.
    Gilley, P. M., Sharma, A., Dorman, M., Finley, C. C., Panch, A. S., & Martin, K. (2006). Minimization of cochlear implant stimulus artifact in cortical auditory evoked potentials. Clinical Neurophysiology, 117, 1772–1782.CrossRefGoogle Scholar
  58. 58.
    Ponton, C. W., Don, M., Eggermont, J. J., Waring, M. D., & Masuda, A. (1996). Maturation of human cortical auditory function: Differences between normal-hearing children and children with cochlear implants. Ear and Hearing, 17, 430–437.CrossRefGoogle Scholar
  59. 59.
    Gilley, P. M., Sharma, A., & Dorman, M. F. (2008). Cortical reorganization in children with cochlear implants. Brain Research, 1239(1999), 56–65.CrossRefGoogle Scholar
  60. 60.
    Sharma, A., Gilley, P. M., Dorman, M. F., & Baldwin, R. (2007). Deprivation-induced cortical reorganization in children with cochlear implants. International Journal of Audiology, 46, 494–500.CrossRefGoogle Scholar
  61. 61.
    Cichocki, A., & Amari, S. (2002). Robust techniques for BSS and ICA with Noisy data. In Adaptive blind signal and image processing (pp. 307–308). West Sussex: Wiley.CrossRefGoogle Scholar
  62. 62.
    Vigário, R. N. (1997). Extraction of ocular artefacts from EEG using independent component analysis. Electroencephalography and Clinical Neurophysiology, 103, 395–404.CrossRefGoogle Scholar
  63. 63.
    James, C., & Castañeda-Villa, N. (2006). ICA of auditory evoked potentials in children with cochlear implants: Component selection. In: IET 3rd international conference on advances in medical, signal and information processing, 2006. MEDSIP 2006 (pp. 6–9).Google Scholar
  64. 64.
    Himberg, J., & Hyvarinen, A. (2003). Icasso: Software for investigating the reliability of ICA estimates by clustering and visualization. 2003 IEEE XIII Work. Neural Networks Signal Process (IEEE Cat. No.03TH8718) (pp. 259–268).Google Scholar
  65. 65.
    Castañeda-Villa, N., & James, C. J. (2008). The selection of optimal ICA component estimates using 3 popular ICA algorithms. In: Annual international IEEE EMBS conference (pp. 5216–5219).Google Scholar
  66. 66.
    Jung, T.-P., Humphriesl, C., Lee, T., Makeig, S., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (1998). Extended ICA removes artifacts from electroencephalographic recordings. Advances in Neural Information Processing Systems, 10, 894–900.Google Scholar
  67. 67.
    Kraskov, A., Stögbauer, H., Andrzejak, R. G., & Grassberger, P. (2005). Hierarchical clustering using mutual information. Europhys, 70(2), 278–284.MathSciNetCrossRefGoogle Scholar
  68. 68.
    Castaneda-Villa, N., & James, C. J. (2007). Objective source selection in blind source separation of AEPs in children with Cochlear implants. In: Proceedings 29th annual international conference IEEE EMBS (pp. 6223–6226).Google Scholar
  69. 69.
    Everitt, B., & Hothorn, T. (2011). An introduction to applied multivariare analysis with R. New York: Springer.zbMATHCrossRefGoogle Scholar
  70. 70.
    Castañeda-Villa, N., Cornejo-Cruz, J. M., & Granados-Trejo, P. (2015). Comparison between different similarity measure functions for optimal clustering AEPs independent components. IEEE Engineering in Medicine and Biology Society, 2015, 7446–7449.Google Scholar
  71. 71.
    Ponton, C. W., Vasama, J.-P., Tremblay, K. L., Khosla, D., Kwong, B., & Don, M. (2001). Plasticity in the adult human central auditory system: Evidence from late-onset profound unilateral deafness. Hearing Research, 154, 32–44.CrossRefGoogle Scholar
  72. 72.
    Sharma, A., Martin, K., Roland, P., Bauer, P., Sweeney, M. H., Gilley, P. M., & Dorman, M. (2005). P1 latency as a biomarker for central auditory development in children with hearing impairment. Journal of the American Academy of Audiology, 16(8), 564–573.CrossRefGoogle Scholar
  73. 73.
    Castañeda-Villa, N., Cornejo-Cruz, J. M., & James, C. (2009). Independent component analysis for robust assessment of auditory system maturation in children with cochlear implants. Cochlear Implants International, 11(2), 71–83.CrossRefGoogle Scholar
  74. 74.
    Castañeda-Villa, N., Cornejo, J. M., James, C. J., & Maurits, N. M. (2012). Quantification of LLAEP interhemispheric symmetry by the intraclass correlation coefficient as a measure of cortical reorganization after cochlear implantation. International Journal of Pediatric Otorhinolaryngology, 76(12), 1729–1736.CrossRefGoogle Scholar
  75. 75.
    Cichocki, A., Amari, S., Siwek, K., Tanaka, T., Anh Huy Phan, et al. ICALAB toolboxes.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentUniversidad Autónoma Metropolitana-IztapalapaMéxico CityMéxico

Personalised recommendations