Skip to main content

Spectral Theory on Manifolds

  • Chapter
  • First Online:
Spectral Theory

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 284))

  • 5240 Accesses

Abstract

This chapter gives a brief introduction to the spectral theory of graphs. The primary focus is on quantum graphs consisting of the Laplacian operator acting on a metric graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)

    Book  Google Scholar 

  2. Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété Riemannienne. Lecture Notes in Mathematics, vol. 194. Springer, Berlin (1971)

    Chapter  Google Scholar 

  3. Borthwick, D.: Spectral Theory of Infinite-Area Hyperbolic Surfaces. Progress in Mathematics, vol. 318, 2nd edn. Birkhäuser/Springer, Cham (2016)

    Google Scholar 

  4. Brooks, R.: A relation between growth and the spectrum of the Laplacian. Math. Z. 178, 501–508 (1981)

    Article  MathSciNet  Google Scholar 

  5. Brooks, R.: Inverse spectral geometry. In: Progress in Inverse Spectral Geometry. Trends in Mathematics, pp. 115–132. Birkhäuser, Basel (1997)

    Chapter  Google Scholar 

  6. Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  7. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic, London (1984). Including a chapter by Randol, B, With an appendix by Dodziuk, J.

    Google Scholar 

  8. Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)

    Article  MathSciNet  Google Scholar 

  9. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  10. do Carmo, M.P.A.: Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser, Boston (1992). Translated from the second Portuguese edition by Francis Flaherty

    Book  Google Scholar 

  11. Donnelly, H., Li, P.: Pure point spectrum and negative curvature for noncompact manifolds. Duke Math. J. 46, 497–503 (1979)

    Article  MathSciNet  Google Scholar 

  12. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

    Google Scholar 

  13. Gaffney, M.P.: The harmonic operator for exterior differential forms. Proc. Nat. Acad. Sci. U.S.A. 37, 48–50 (1951)

    Article  MathSciNet  Google Scholar 

  14. Guillemin, V., Pollack, A.:Differential Topology. Prentice-Hall, Englewood Cliffs (1974)

    Google Scholar 

  15. Heinonen, J.: Lectures on Lipschitz analysis. Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 100. University of Jyväskylä, Jyväskylä (2005)

    Google Scholar 

  16. Iwaniec, H.: Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics, vol. 53, 2nd edn. American Mathematical Society, Providence (2002)

    Google Scholar 

  17. Klingenberg, W.P.A.: Riemannian Geometry. De Gruyter Studies in Mathematics, vol. 1, 2nd edn. Walter de Gruyter, Berlin (1995)

    Google Scholar 

  18. Lablée, O.: Spectral Theory in Riemannian Geometry. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2015)

    Book  Google Scholar 

  19. Lee, J.M.: Riemannian Manifolds. An Introduction to Curvature. Graduate Texts in Mathematics, vol. 176. Springer, New York (1997)

    Google Scholar 

  20. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218. Springer, New York (2003)

    Chapter  Google Scholar 

  21. Minakshisundaram, S., Pleijel, A.: Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Can. J. Math. 1, 242–256 (1949)

    Article  MathSciNet  Google Scholar 

  22. Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics, vol. 171, 3rd edn. Springer, Berlin (2016)

    Book  Google Scholar 

  23. Roelcke, W.: Über den Laplace-Operator auf Riemannschen Mannigfaltigkeiten mit diskontinuierlichen Gruppen. Math. Nachr. 21, 131–149 (1960)

    Article  MathSciNet  Google Scholar 

  24. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. In: Proceedings of the Conference on Lecture Notes in Geometry and Topology, I. International Press, Cambridge (1994)

    MATH  Google Scholar 

  25. Venkov, A.B.: Spectral Theory of Automorphic Functions and Its Applications. Kluwer Academic Publishers, Dordrecht (1990)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borthwick, D. (2020). Spectral Theory on Manifolds. In: Spectral Theory. Graduate Texts in Mathematics, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-38002-1_9

Download citation

Publish with us

Policies and ethics