Skip to main content

The Laplacian with Boundary Conditions

  • Chapter
  • First Online:
Spectral Theory

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 284))

  • 5192 Accesses

Abstract

The abstract theory developed in previous chapters is applied to the spectral theory of the Laplacian on a bounded open set in Euclidean space. We define the sefl-adjoint extensions corresponding to classical boundary conditions. The chapter includes discussion of some classic spectral results, including the Weyl law, Courant’s nodal domain theorem, and eigenvalue comparison theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arendt, W., Nittka, R., Peter, W., Steiner, F.: Weyl’s law: spectral properties of the Laplacian in mathematics and physics. In: Mathematical Analysis of Evolution, Information, and Complexity, pp. 1–71. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  2. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9) 36, 235–249 (1957)

    Google Scholar 

  3. Ashbaugh, M.S.: Isoperimetric and universal inequalities for eigenvalues. In: Spectral Theory and Geometry (Edinburgh, 1998). London Mathematical Society Lecture Notes Series, vol. 273, pp. 95–139. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  4. Ashbaugh, M.S., Benguria, R.D.: Proof of the Payne-PĂ³lya-Weinberger conjecture. Bull. Am. Math. Soc. 25, 19–29 (1991)

    Article  Google Scholar 

  5. Borthwick, D.: Introduction to Partial Differential Equations. Universitext. Springer, Cham (2016)

    Book  Google Scholar 

  6. Carleman, T.: PropriĂ©tĂ©s asymptotiques des fonctions fondamentales des membranes vibrantes. In: Ă…ttonde Skandinaviska Matematikerkongressen (Stockholm, 1934), pp. 34–44. HĂ¥kan Ohlssons Boktryckeri, Lund (1935)

    Google Scholar 

  7. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic, London (1984). Including a chapter by Randol, B, With an appendix by Dodziuk, J.

    Google Scholar 

  8. Chavel, I.: Isoperimetric Inequalities. Cambridge Tracts in Mathematics, vol. 145. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  9. Davies, E.B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  10. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, 2nd edn., vol. 19. American Mathematical Society, Providence (2010)

    Google Scholar 

  11. GĂ¥rding, L.: On the asymptotic distribution of the eigenvalues and eigenfunctions of elliptic differential operators. Math. Scand. 1, 237–255 (1953)

    Article  MathSciNet  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, vol. 224, 2nd edn. Springer, Berlin (1983)

    Google Scholar 

  13. Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110, 1–22 (1992)

    Article  MathSciNet  Google Scholar 

  14. Ivrii, V.: 100 years of Weyl’s law. Bull. Math. Sci. 6, 379–452 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73, 1–23 (1966)

    Article  MathSciNet  Google Scholar 

  16. Lamé, G.: Mémoire sur la propagation de la chaleur dans les polyèdres. J. Ecol. Polytech. 22, 194–251 (1833)

    Google Scholar 

  17. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  18. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V.: NIST Digital Library of Mathematical Functions (2016). http://dlmf.nist.gov/. Release 1.0.19

  19. Payne, L.E., PĂ³lya, G., Weinberger, H.F.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289–298 (1956)

    Article  MathSciNet  Google Scholar 

  20. Pleijel, Å.: A study of certain Green’s functions with applications in the theory of vibrating membranes. Ark. Mat. 2, 553–569 (1954)

    Article  MathSciNet  Google Scholar 

  21. PĂ³lya, G., SzegÅ‘, G.: Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, vol. 27. Princeton University Press, Princeton (1951)

    Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic, London (1975)

    Google Scholar 

  23. Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill, New York (1976)

    Google Scholar 

  24. SchmĂ¼dgen, K.: Unbounded Self-adjoint Operators on Hilbert Space. Graduate Texts in Mathematics, vol. 265. Springer, Dordrecht (2012)

    Google Scholar 

  25. Szegő, G.: Inequalities for certain eigenvalues of a membrane of given area. J. Rational Mech. Anal. 3, 343–356 (1954)

    Google Scholar 

  26. Weinberger, H.F.: An isoperimetric inequality for the N-dimensional free membrane problem. J. Rational Mech. Anal. 5, 633–636 (1956)

    MathSciNet  MATH  Google Scholar 

  27. Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borthwick, D. (2020). The Laplacian with Boundary Conditions. In: Spectral Theory. Graduate Texts in Mathematics, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-38002-1_6

Download citation

Publish with us

Policies and ethics