Spectrum and Resolvent

Part of the Graduate Texts in Mathematics book series (GTM, volume 284)


This chapter introduces the notion of the spectrum of an operator (possibly unbounded) on a Hilbert space. The theory of the resolvent operator is developed and used to establish basic properties of the spectrum.


  1. 3.
    Arveson, W.: A Short Course on Spectral Theory. Graduate Texts in Mathematics, vol. 209. Springer, Berlin (2002)CrossRefGoogle Scholar
  2. 6.
    Avila, A., Jitomirskaya, S.: The Ten Martini Problem. Ann. Math. (2) 170, 303–342 (2009)MathSciNetCrossRefGoogle Scholar
  3. 35.
    Gelfand, I.M.: Normierte Ringe. Rec. Math. [Mat. Sbornik] N. S. 9(51), 3–24 (1941)Google Scholar
  4. 37.
    Gohberg, I.C., Krein, M.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969)Google Scholar
  5. 42.
    Harper, P.G.: Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. Lond. A 68, 874–878 (1955)CrossRefGoogle Scholar
  6. 45.
    Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976)CrossRefGoogle Scholar
  7. 60.
    MacCluer, B.D.: Elementary Functional Analysis. Graduate Texts in Mathematics, vol. 253. Springer, New York (2009)CrossRefGoogle Scholar
  8. 64.
    Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V.: NIST Digital Library of Mathematical Functions (2016). Release 1.0.19
  9. 69.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic, London (1972)zbMATHGoogle Scholar
  10. 77.
    Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill, New York (1976)Google Scholar
  11. 83.
    Simon, B.: Operator Theory. A Comprehensive Course in Analysis, Part 4. American Mathematical Society, Providence (2015)Google Scholar
  12. 87.
    Stein, E.M., Shakarchi, R.: Real Analysis. Princeton Lectures in Analysis, III. Princeton University Press, Princeton (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsEmory UniversityAtlantaUSA

Personalised recommendations