Hilbert Spaces

Part of the Graduate Texts in Mathematics book series (GTM, volume 284)


This chapter introduces some basic tools of functional analysis, with a focus on separable Hilbert spaces.


  1. 13.
    Borthwick, D.: Introduction to Partial Differential Equations. Universitext. Springer, Cham (2016)CrossRefGoogle Scholar
  2. 29.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, 2nd edn., vol. 19. American Mathematical Society, Providence (2010)Google Scholar
  3. 31.
    Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Wiley, London (1984)zbMATHGoogle Scholar
  4. 36.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, vol. 224, 2nd edn. Springer, Berlin (1983)Google Scholar
  5. 60.
    MacCluer, B.D.: Elementary Functional Analysis. Graduate Texts in Mathematics, vol. 253. Springer, New York (2009)CrossRefGoogle Scholar
  6. 69.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic, London (1972)zbMATHGoogle Scholar
  7. 76.
    Royden, H.L.: Real Analysis, 3rd edn. Macmillan, New York (1988)zbMATHGoogle Scholar
  8. 77.
    Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill, New York (1976)Google Scholar
  9. 84.
    Sobolev, S.L.: Applications of Functional Analysis in Mathematical Physics. Translated from the Russian by F. E. Browder. Translations of Mathematical Monographs, vol. 7. American Mathematical Society, Providence (1963)Google Scholar
  10. 85.
    Sokal, A.D.: A really simple elementary proof of the uniform boundedness theorem. Am. Math. Mon. 118, 450–452 (2011)MathSciNetCrossRefGoogle Scholar
  11. 87.
    Stein, E.M., Shakarchi, R.: Real Analysis. Princeton Lectures in Analysis, III. Princeton University Press, Princeton (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsEmory UniversityAtlantaUSA

Personalised recommendations