Simulation Models of Generating Unit Elements

  • Stefan PaszekEmail author
  • Andrzej Boboń
  • Sebastian Berhausen
  • Łukasz Majka
  • Adrian Nocoń
  • Piotr Pruski
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 631)


This chapter deals with different models of synchronous generators and excitation systems operating in a power system. The most important equations describing particular mathematical models are given and the simplifying assumptions are presented. The following generator models are presented in detail: linear RL models of type (3,3), (2,2), (2,1) and (1,0), nonlinear RL model of type (3,3), reduced RL models, GENROU—XT model of a synchronous generator with a cylindrical rotor, GENSAL—XT model of a synchronous generator with a salient pole rotor. Rotor mechanical equations and generator electromagnetic torque equation are given. In this chapter, selected models of excitation systems recommended by the IEEE Committee and the models of electromachine and static excitation systems operating in the Polish PS are also presented. This chapter contains descriptions of the excitation system models, schematic diagrams, state equations, output equations, inequalities describing limiters, initial values of state variables of the analyzed excitation systems. At the end of this chapter, the general model of a generating unit developed by the authors is described. This model was created by appropriate combination of models of: synchronous generator, excitation system, turbine and PSS.


Synchronous generator models XT generator models RL generator models Excitation system models Generating unit model 


  1. 1.
    Anderson PM, Fouad AA (2003) Power system control and stability. Wiley Inc.Google Scholar
  2. 2.
    Arjona MA (2004) Parameter calculation of a turbogenerator during an open-circuit transient excitation. IEEE Trans Energy Convers 19(1):46–52CrossRefGoogle Scholar
  3. 3.
    Ban D, Žarko D, Maljković Z (1998) The application of finite element method for more accurate calculation and analysis of turbogenerator parameters. Electric Power Compon Syst 26(10):1081–1093CrossRefGoogle Scholar
  4. 4.
    Bastos JPA, Sadowski N (2003) Electromagnetic modeling by finite element methods. Marcel Dekker, Inc.Google Scholar
  5. 5.
    Berhausen S, Paszek S (2015) Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator. Bull Pol Acad Sci 63(3):575–582Google Scholar
  6. 6.
    Berhausen S, PaszekS (2018) Calculation of selected parameters of synchronous generators of different construction based on the analysis of the waveforms for a two-phase short-circuit. Paper presented at the international symposium on electrical machines, SME, Andrychów, Poland, 10-13 June 2018, pp 1–5Google Scholar
  7. 7.
    Białek J, Paszek S, Boboń A, Kudła J (2002) Synchronous machine parameter derivation program. Project ECP1219/C3762 sponsored by EPRI Solutions, Electric Power Research Institute, Inc. (Contractor: University of Durham, School of Engineering, Durham, UK), Paolo Alto, USAGoogle Scholar
  8. 8.
    Boboń A, Bojarska M, Kraszewski T, Majka Ł, Pasko M, Paszek S, Pruski P (2012) Computations of generating unit model parameters using program PARZW with database. Paper presented at the 10th international conference control of power systems, CPS, Ta-transké Matliare, High Tatras, Slovak Republic, 15-17 May 2012, pp 169–170Google Scholar
  9. 9.
    Boboń A, Nocoń A, Paszek S, Pruski P (2017) Determination of synchronous generator nonlinear model parameters based on power rejection tests using a gradient optimization al-gorithm. Bull Pol Acad Sci 65(4):479–488. Scholar
  10. 10.
    Boldea I (2006) Synchronous generators. Taylor & FrancisGoogle Scholar
  11. 11.
    Ong C-M (1998) Dynamic simulation of electric machinery using Matlab/Simulink. Prentice Hall, New JerseyGoogle Scholar
  12. 12.
    Trebincevic I, Malik OP (1996) Computer models for representation of digital-based excitation systems. IEEE Trans Energy Convers 11(3):607–615Google Scholar
  13. 13.
    Dandeno PL, Hauth RL, Schulz RP (1973) Effects of synchronous machine modelling in large scale system studies. IEEE Trans Power Apparatus Syst PAS 92(2):574–582Google Scholar
  14. 14.
    Dandeno PL, Kundur P, Poray AT, Zein El-din HM (1981) Adaptation and validation of turbogenerator model parameters through on-line frequency response measurements. IEEE Trans Power Apparatus Syst PAS 100(4):1656–1665Google Scholar
  15. 15.
    de Mello FP, Hannett LH (1983) Determination of synchronous machine electrical characteristics by test. IEEE Trans Power Apparatus Syst 102(12):3810–3815Google Scholar
  16. 16.
    de Mello FP, Hannett LH (1986) Representation of saturation in synchronous machines. IEEE Trans Power Syst PWRS 1(4):8–18Google Scholar
  17. 17.
    El-Serafi AM, Abdallah AS (1991) Effect of saturation on the steady-state stability of a synchronous machine connected to an infinite bus system. IEEE Trans Energy Convers 6(3):514–521CrossRefGoogle Scholar
  18. 18.
    Feltes JW, Orero S, Fardanesh B, Uzunovic E, Zelingher S, Abi-Samra N (2002) Deriving model parameters from field test measurements. IEEE Comput Appl Power 30–36Google Scholar
  19. 19.
    Gao J, Zhang L, Wang X (2009) AC machine systems, mathematical model and parameters, analysis, and system performance. Springer, Berlin-HeidelbergGoogle Scholar
  20. 20.
    Ghomi M, Najafi YS (2007) Review of synchronous generator parameters estimation and model identification. Paper presented at the 42nd international universities power engineering conference, UPEC, September 2007, pp 228–235Google Scholar
  21. 21.
    Horning S, Keyhani A, Kamwa I (1997) On-line evaluation of a round rotor synchronous machine parameter set estimated from standstill time-domain data. IEEE Trans Energy Convers 12(4):289–296CrossRefGoogle Scholar
  22. 22.
    Hutchison G, Zahawi B, Harmer K, Gadoue S, Giaouris D (2015) Non-invasive identification of turbogenerator parameters from actual transient network data. Gener, Trans Distrib, IET 9(11):1129–1136CrossRefGoogle Scholar
  23. 23.
    IEEE Committee Report (1973) Dynamic models for steam and hydro turbines in power system studies. IEEE Trans Power Apparatus Syst, PAS 92(6):1904–1915Google Scholar
  24. 24.
    IEEE Standard 421.5 (2016) IEEE recommended practice for excitation system models for power system stability studies. IEEE Standard 421.5Google Scholar
  25. 25.
    IEEE Standard 1110–2002, 11 (2003) IEEE guide for synchronous generator modeling practices and applications in power system stability analyses. IEEE Std 1110–2002, 11Google Scholar
  26. 26.
    Kovács PK (1984) Transient phenomena in electrical machines. Akadémiai Kiadó, BudapestGoogle Scholar
  27. 27.
    Krause PC (1986) Analysis of electric machinery. McGraw-Hill Book Company, New YorkGoogle Scholar
  28. 28.
    Krause P, Wasynczuk O, Sudhoff S, Pekarek S (2013) Analysis of electric machinery and drive systems, , 3rd edn. Wiley-IEEE PressGoogle Scholar
  29. 29.
    Kundur P (1994) Power system stability and control. McGraw-Hill, Inc.Google Scholar
  30. 30.
    Kyriakides E, Heydt GT, Vittal V (2005) Online parameter estimation of round rotor synchronous generators including magnetic saturation. IEEE Trans Energy Convers 20(3):529–537CrossRefGoogle Scholar
  31. 31.
    Majka Ł, Paszek S (2007) Turbogenerator and electromachine excitation system parameter identification on the ground of measuring tests made in Power Plant Rybnik. Paper presented at the 30th international conference on fundamentals of electrotechnics and circuit theory, SPETO, Ustroń, May 2007, pp 179–180Google Scholar
  32. 32.
    Majka Ł, Paszek S (2009) Use of selected optimisation algorithm for estimation of excitation system model parameters. Paper presented at the advanced methods of the theory of electrical engineering AMTEE, Cheb, Czech Republic, Sept 2009, pp IV-7–IV-8Google Scholar
  33. 33.
    Majka Ł, Paszek S (2010) Algorithms for estimation of models parameters of excitation system of an electrical machine. Acta Tech CSAV 55(2):179–194Google Scholar
  34. 34.
    Majka Ł, Paszek S (2016) Mathematical model parameter estimation of a generating unit operating in the polish national power system. Bull Pol Acad Sci 64(2):409–416Google Scholar
  35. 35.
    Mathworks, Inc.: Matlab User’s Guide (2002)Google Scholar
  36. 36.
    Mathworks, Inc.: Using Simulink (2002)Google Scholar
  37. 37.
    Montero LR, Mota WS, Jacobina CB (1996) A microcomputer-based load angle and frequency measurement. IEEE Proc Instrum Meas Technol Conf 606–609Google Scholar
  38. 38.
    Munoz-Hernandez GA, Mansoor SP, Jones DI (2012) Modelling and controlling hydropower plants. Springer, LondonGoogle Scholar
  39. 39.
    Nocoń A, Boboń A, Paszek S, Pasko M, Pruski P, Majka Ł, Szuster D, Bojarska M (2011) Measurement parameter estimation of the model of a synchronous generator working in thermal electric power plant. Paper presented at the 10th international conference on “advanced methods in the theory of electrical engineering, AMTEE, 6–9 Sept 2011, Klatovy, Czech Republic, pp VI-3-4Google Scholar
  40. 40.
    Padiyar KR (1999) Analysis of subsynchronous resonance in power systems. Springer, Boston, MACrossRefGoogle Scholar
  41. 41.
    Paszek S, Boboń A, Kudła J, Białek J, Abi-Samra N (2005) Parameter estimation of the mathematical model of a generator, excitation system and turbine. Przegląd Elektrotechniczny 81(11):7–12Google Scholar
  42. 42.
    Paszek S, Nocoń A (2014) Optimisation and polyoptimisation of power system stabilizer parameters. Lambert Academic Publishing, Saarbrücken, GermanyGoogle Scholar
  43. 43.
    Paszek S, Nocoń A (2015) Parameter polyoptimization of PSS2A power system stabilizers operating in a multi-machine power system including the uncertainty of model parameters. Appl Math Comput 267:750–757.
  44. 44.
    Plancon J (1996) Finite element analysis for determining the operating parameters of high-power generators. Paper presented at the conference ELECTRIMACS, 17–19 Sept 1996, pp 427–433Google Scholar
  45. 45.
    Power Technologies, a Division of S&W Consultants Inc.: Program PSS/E application guide. Siemens Power Technologies Inc.Google Scholar
  46. 46.
    Pyrhonen J, Jokinen T, Hrabovcova V (2008) Design of rotating electrical machines. Wiley Ltd., New JerseyCrossRefGoogle Scholar
  47. 47.
    Rehaoulia H, Henao H, Capolino GA (2007) Modeling of synchronous machines with magnetic saturation. Electric Power Syst Res 77:652–659CrossRefGoogle Scholar
  48. 48.
    Salon SJ (2000) Finite element analysis of electrical machines. Kluwer Academic Publishers, New YorkGoogle Scholar
  49. 49.
    Wang X-F, Song Y, Irving M (2008) Mathematical model of synchronous generator and load. In: Modern power systems analysis. Springer Boston, MA, pp 333–404Google Scholar
  50. 50.
    Zaker B, Gharehpetian GB, Karrari M (2018) Improving synchronous generator parameters estimation using d-q axes test and considering saturation effect. IEEE Trans Ind Inf 14(5):1898–1908CrossRefGoogle Scholar
  51. 51.
    Zhou P-B (1993) Numerical analysis of electromagnetic fields. In: Electric energy systems and engineering series. Springer, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stefan Paszek
    • 1
    Email author
  • Andrzej Boboń
    • 2
  • Sebastian Berhausen
    • 3
  • Łukasz Majka
    • 4
  • Adrian Nocoń
    • 5
  • Piotr Pruski
    • 6
  1. 1.Faculty of Electrical EngineeringSilesian University of TechnologyGliwicePoland
  2. 2.Faculty of Electrical EngineeringSilesian University of TechnologyGliwicePoland
  3. 3.Faculty of Electrical EngineeringSilesian University of TechnologyGliwicePoland
  4. 4.Faculty of Electrical EngineeringSilesian University of TechnologyGliwicePoland
  5. 5.Faculty of Electrical EngineeringSilesian University of TechnologyGliwicePoland
  6. 6.Faculty of Electrical EngineeringSilesian University of TechnologyGliwicePoland

Personalised recommendations