Skip to main content

Development of an Automatic Locomotive Traction Drive Control System to Reduce the Amount of Wheel Slippage on the Rail

  • Conference paper
  • First Online:
VIII International Scientific Siberian Transport Forum (TransSiberia 2019)

Abstract

The subject of the study is the structure of the vector control system. The relevance of this topic lies in the current trends in the development of traction drive control systems that provide stable operation of an electric locomotive. On the basis of the developed and described mathematical model, the basic principles of control of the traction drive with the task of speed and torque are determined. The simulation results reflect the key moments of electric locomotive drive control in the conditions of external disturbing factors. The control system for the traction drive will completely provide the realization of traction properties of a locomotive subject to achieve and automatically maintain specified speed until the construction regardless of the profile path with an acceleration due to the task utilization of time at the wheel of the locomotive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi, I., Noguchi, T.: A new quick-response and high efficiency control strategy of an induction motor. IEEE Trans. Ind. Appl. IA-22, 820–827 (1986)

    Article  Google Scholar 

  2. Takahashi, I., Ohimori, Y.: High-performance direct torque control of an induction motor. IEEE Trans. Ind. Appl. 25, 257–264 (1989)

    Article  Google Scholar 

  3. Krzysztoszek, K., Luft, M., Lukasik, Z.: Digital control model for electric traction vehicles. Procedia Comput. Sci. 149, 274–277 (2019)

    Article  Google Scholar 

  4. Buynosov, A.P., Antropov, S.N.: Study of rail corrugations considering “wheel–ail” friction theory. Transp. Urals 1(60), 86–89 (2019). https://doi.org/10.20291/1815-9400-2019-1-86-89

    Article  Google Scholar 

  5. Drabek, P., Pittermann, M., Los, M., Bednar, B.: Traction drive with MFT - novel control strategy based on zero vectors insertion. IFAC Proc. Vol. 47(3), 11968–11973 (2014)

    Article  Google Scholar 

  6. Buynosov, A.P., Volkov, D.V., Dinislamov, A.R.: Nondestructive control method of depth of surface tempering of details of mechanical part of locomotives as the alternative to the destroying ways. Transp. Urals 1(56), 26–29 (2018). https://doi.org/10.20291/1815-9400-2018-1-26-29

    Article  Google Scholar 

  7. Buynosov, A.P., Volkov, D.V., Fedorov, E.V.: Automatic control of train braking system integrity and density. Transp. Urals 4(59), 77–80 (2018). https://doi.org/10.20291/1815-9400-2018-4-7-80

    Article  Google Scholar 

  8. Liu, Y., Jiang, T., Zhao, X., Wen, Z., Liang, S.: On the wheel rolling contact fatigue of high power AC locomotives running in complicated environments. Wear 436–437, Article 202956 (2019)

    Article  Google Scholar 

  9. Jiqin, Wu: Pantograph and Contact Line System. Elsevier, London (2018)

    Google Scholar 

  10. Pyndak, V.I., Novikov, A.E.: Met. Sci. Heat Treat. 3–4(58), 226–230 (2016)

    Article  Google Scholar 

  11. Zhuravlev, G.M., Gvozdev, A.E., Cheglov, A.E., Sergeev, N.N., Gubanov, O.M.: Steel Transl. 6(47), 399–411 (2017)

    Article  Google Scholar 

  12. Kolpakov, A.S., Kardonina, N.I.: Therm. Eng. 2(63), 150–155 (2016)

    Article  Google Scholar 

  13. Trushnikov, D.N., Belinin, D.S., Shitsyn, Y.D.: Mod. Probl. Sci. Educ. 2(95) (2014)

    Google Scholar 

  14. Buynosov, A.P., Volkov, D.V., Umylin, I.V.: Definition of a limit difference in the diameters of bandages at one wheel pair of the motor car of an electric train(s). Sovremennye tekhnologii, Sistemnyi analiz, Modelirovanie 56(2), 8–18 (2017). https://doi.org/10.26731/1813-9108.2018.2(58).90-97

    Article  Google Scholar 

  15. Buynosov, A., Lapshin, V., Smolyaninov, A., Dinislamov, A.: Calculation of hardening process parameters for locomotive parts. In: Polytransport Systems-2018. MATEC Web of Conferences, vol. 216, p. 02020 (2018). https://doi.org/10.1051/matecconf/201821602020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Buynosov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buynosov, A., Sergeev, B., Kalinichenko, A., Antropov, S. (2020). Development of an Automatic Locomotive Traction Drive Control System to Reduce the Amount of Wheel Slippage on the Rail. In: Popovic, Z., Manakov, A., Breskich, V. (eds) VIII International Scientific Siberian Transport Forum. TransSiberia 2019. Advances in Intelligent Systems and Computing, vol 1115. Springer, Cham. https://doi.org/10.1007/978-3-030-37916-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37916-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37915-5

  • Online ISBN: 978-3-030-37916-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics