Skip to main content

Dual-Outputs Switched Capacitor Voltage Regulator

  • Chapter
  • First Online:
Power Management for Wearable Electronic Devices

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 740 Accesses

Abstract

Since multiple voltage levels are required simultaneously by the proposed wearable device in Fig. 1.12, multiple voltage regulators are needed. The switched capacitor (SC) voltage regulator is widely utilized in low power applications since the small capacitance can be fully integrated on-chip while driving μA current. Conventionally, multiple SC voltage regulators are required to generate simultaneous multiple regulated voltage levels. This way, each block in the chip operates at an optimum voltage level. However, this conventional PMU design suffers from a large area overhead because it is dominated by the area of the SC regulators. The number of SC regulators increases as the number of the required regulated output voltage levels increases. Hence, more passive components (flying and load capacitors) are needed which makes the PMU area large. As a result, it is imperative to find an efficient way to generate multiple output voltages with minimum area overhead that targets μW power devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Hua and H. Lee, “A reconfigurable dual-output switched-capacitor DC-DC regulator with sub-harmonic adaptive-on-time control for low-power applications,” IEEE Journal of Solid-State Circuits, vol. 50, no. 3, pp. 724–736, 2015.

    Article  Google Scholar 

  2. W. Jung, J. Gu, P. D. Myers, M. Shim, S. Jeong, K. Yang, M. Choi, Z. Foo, S. Bang, S. Oh et al., “A 60%-efficiency 20 nw-500 μw tri-output fully integrated power management unit with environmental adaptation and load-proportional biasing for IoT systems,” in Solid-State Circuits Conference (ISSCC), 2016 IEEE International. IEEE, 2016, pp. 154–155.

    Google Scholar 

  3. Y. Zhao, Y. Yang, K. Mazumdar, X. Guo, and M. R. Stan, “A multi-output on-chip switched-capacitor DC-DC converter for near-and sub-threshold power modes,” in Circuits and Systems (ISCAS), 2014 IEEE International Symposium on. IEEE, 2014, pp. 1632–1635.

    Google Scholar 

  4. S. Ahsanuzzaman, A. Prodić, and D. A. Johns, “An integrated high-density power management solution for portable applications based on a multioutput switched-capacitor circuit,” IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4305–4323, 2016.

    Article  Google Scholar 

  5. P. Kumar and W. Proefrock, “Novel switched capacitor based triple output fixed ratio converter (TOFRC),” in Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE. IEEE, 2012, pp. 2352–2356.

    Google Scholar 

  6. Z. Safarian and H. Hashemi, “Capacitance-sharing, dual-output, compact, switched-capacitor DC–DC converter for low-power biomedical implants,” Electronics Letters, vol. 50, no. 23, pp. 1673–1675, 2014.

    Article  Google Scholar 

  7. C. K. Teh and A. Suzuki, “A 2-output step-up/step-down switched-capacitor DC-DC converter with 95.8% peak efficiency and 0.85-to-3.6 V input voltage range,” in Solid-State Circuits Conference (ISSCC), 2016 IEEE International. IEEE, 2016, pp. 222–223.

    Google Scholar 

  8. J. Jiang, Y. Lu, W.-H. Ki, U. Seng-Pan, and R. P. Martins, “A dual-symmetrical-output switched-capacitor converter with dynamic power cells and minimized cross regulation for application processors in 28 nm CMOS,” in Solid-State Circuits Conference (ISSCC), 2017 IEEE International. IEEE, 2017, pp. 344–345.

    Google Scholar 

  9. T. Instruments. (2016) Reverse Current Protection in Load Switches. [Online]. Available: http://www.ti.com/lit/an/slva730/slva730.pdf

  10. D. Kilani, M. Alhawari, B. Mohammad, H. Saleh, and M. Ismail, “An Efficient Switched-Capacitor DC-DC Buck Converter for Self-Powered Wearable Electronics,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 10, pp. 1557–1566, 2016.

    Article  MathSciNet  Google Scholar 

  11. D. Kilani, “An efficient on-chip switched-capacitor DC-DC converter for ultra-low power applications.”

    Google Scholar 

  12. T. Van Breussegem and M. Steyaert, CMOS integrated capacitive DC-DC converters. Springer Science & Business Media, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Verilog Code of ATM

Appendix: Verilog Code of ATM

module FSM (En1,En2,En3,En4,g,a,b,c,clk,rst,state,next-state); input a, b, c ;input rst, clk;output reg En1, En2, En3, En4, g; output reg [1:0] state;output reg [1:0] next-state;parameter [1:0] S0=2’b00, S1=2’b01, S2=2’b11;always @ (a or b or c or state)begincase (state)S0: case (a,b,c) 3’b000: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

3’b001: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

3’b010: begin next-state=S1; En1= 1; En2= 1; g=1; En3=0; En4=1; end

3’b100: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

3’b101: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

3’b110: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

default: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

endcase

S1: case (a,b,c)3’b000: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

3’b001: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

3’b010: begin next-state=S2; En1= 0; En2= 1; g=1; En3=0; En4=1; end

3’b011: begin next-state=S1; En1= 1; En2= 1; g=1; En3=0; En4=1; end

3’b100: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

3’b110: begin next-state=S1; En1= 1; En2= 1; g=1; En3=0; En4=1; end

default: begin next-state=S1; En1= 1; En2= 1; g=1; En3=0; En4=1; end

endcase

S2: case (a,b,c)3’b000: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

3’b001: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

3’b010: begin next-state=S2; En1= 0; En2= 1; g=1; En3=0; En4=1; end

3’b011: begin next-state=S2; En1= 0; En2= 1; g=1; En3=0; En4=1; end

3’b100: begin next-state=S0; En1= 1; En2= 0; g=0; En3=1; En4=0; end

3’b110: begin next-state=S2; En1= 0; En2= 1; g=1; En3=0; En4=1; end

3’b110: begin next-state=S2; En1= 0; En2= 1; g=1; En3=0; En4=1; end

default: begin next-state=S2; En1= 0; En2= 1; g=1; En3=0; En4=1; end

endcase

endcase end

always @ (posedge clk or negedge rst)

if (rst==0)state< =S0;

else state< =next-state;

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kilani, D., Mohammad, B., Alhawari, M., Saleh, H., Ismail, M. (2020). Dual-Outputs Switched Capacitor Voltage Regulator. In: Power Management for Wearable Electronic Devices. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-37884-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37884-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37883-7

  • Online ISBN: 978-3-030-37884-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics