Skip to main content

Simulation of Biological Learning with Spiking Neural Networks

  • Chapter
  • First Online:
Implementations and Applications of Machine Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 782))

Abstract

Artificial neural network (ANN) research is inspired by how information is dynamically and massively processed in parallel by biological neural networks. Spiking neural networks (SNNs) are versions of artificial neural networks that are more biologically realistic than commonly used static models. As in actual brains, neurons signal each other through current spikes (rather than constant inputs, as in conventional ANNs), and spike timing plays a key role in SNN functioning. In this work, we give an overview of SNNs, and we describe and implement three different mathematical models (integrate and fire, leaky integrate and fire, conductance-based) using the Brian2 software simulator. We also describe the training of SNNs using the spike-timing-dependent plasticity (STDP) algorithm, and discuss an experiment by Diehl and Cook that shows the ability of SNNs to learn to distinguish handwritten digits. Lastly, we describe a few available software SNN simulators and hardware SNN implementations with possible practical applications of SNNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Güçlü, M. van Gerven, Probing human brain function with artificial neural networks, in Comput. Model. Brain Behav., ed. by A.A. Moustafa, (2017), pp. 413--423. https://doi.org/10.1002/9781119159193.ch30

  2. D. Soni, Spiking neural networks, the next generation of machine learning, Data Science and Machine Learning (2010). https://towardsdatascience.com/spiking-neural-networks-the-next-generation-of-machine-learning-84e167f4eb2b. Accessed 13 Oct 2019

  3. H. Hazan et al., BindsNET: A machine learning-oriented spiking neural networks library in python. Front. Neuroinform. 12, 1–18 (2018)

    Article  Google Scholar 

  4. T. Mondeel, Modelling Neuronal Excitation: The Hodgkin-Huxley Model (2012)

    Google Scholar 

  5. J.B. Baladron, D.F. Javier, O. Faugeras, J. Touboul, Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2(1), 1–67 (2012). https://doi.org/10.1186/2190-8567-2-10

    Article  MathSciNet  MATH  Google Scholar 

  6. J.L. Hindmarsh, R.M. Rose, A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)

    Google Scholar 

  7. L.F. Abbott, Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull. 50(5–6), 303–304 (1999)

    Article  Google Scholar 

  8. P. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

    Article  Google Scholar 

  9. Ş. Mihalaş, E. Niebur, A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Comput. 21(3), 704–718 (2009)

    Article  MathSciNet  Google Scholar 

  10. R.D. Vilela, B. Lindner, Comparative study of different integrate-and-fire neurons: Spontaneous activity, dynamical response, and stimulus-induced correlation. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80(3), 1–12 (2009)

    Article  Google Scholar 

  11. A. Tavanaei, A. Maida, BP-STDP: Approximating backpropagation using spike timing dependent plasticity. Neurocomputing 330, 39–47 (2019)

    Article  Google Scholar 

  12. H. Markram, W. Gerstner, P.J. Sjöström, Spike-timing-dependent plasticity: A comprehensive overview. Front. Synaptic Neurosci., 2–5 (2012)

    Google Scholar 

  13. G. Bi, M. Poo, Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24(1), 139–166 (2001)

    Article  Google Scholar 

  14. M. Stimberg, Brian 2 documentation—Brian 2 2.2.2.1 documentation (2016)

    Google Scholar 

  15. Y. LeCun, C. Cortes, C. Burges, The MNIST database of handwritten digits. Courant Inst. Math. Sci., 1–10 (1998)

    Google Scholar 

  16. D. Goodman, Brian: A simulator for spiking neural networks in Python. Front. Neuroinform. 2 (2008)

    Google Scholar 

  17. R. Brette, D.F.M. Goodman, Vectorized algorithms for spiking neural network simulation. Neural Comput. 23(6), 1503–1535 (2011)

    Article  MathSciNet  Google Scholar 

  18. Neuron, Welcome to the community of NEURON users and developers (2018). http://www.neuron.yale.edu/neuron/. Accessed 26 Sept 2019

  19. Genesis, GENESIS Resources (2019). http://genesis-sim.org/. Accessed 26 Sept 2019

  20. M.-O. Gewaltig, M. Diesmann, NEST (Neural simulation tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  21. M. Smith, Self aware patterns, SelfAwarePatterns (2018). https://selfawarepatterns.com/2019/05/08/brain-inspired-hardware/. Accessed 30 Sept 2019

  22. D. S. Modha, Introducing a brain-inspired computer: TrueNorth’s neurons to revolutionize system architecture, IBM Research (2015). http://www.research.ibm.com/articles/brain-chip.shtml. Accessed 30 Sept 2019

  23. A. S. Cassidy et al., Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores, in Proceedings of the International Joint Conference on Neural Networks (2013)

    Google Scholar 

  24. F. Akopyan et al., TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015)

    Article  Google Scholar 

  25. M. Feldman, IBM finds killer app for truenorth neuromorphic chip, TOP500 Supercomputer Sites (2016). https://www.top500.org/news/ibm-finds-killer-app-for-truenorth-neuromorphic-chip/. Accessed 30 Sept 2019

  26. T. Hwu, J. Isbell, N. Oros, and J. Krichmar, A self-driving robot using deep convolutional neural networks on neuromorphic hardware, in Proceedings of the International Joint Conference on Neural Networks, vol 2017 (2017), pp. 635–641

    Google Scholar 

  27. N. Qiao et al., A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9 (2015). https://doi.org/10.3389/fnins.2015.00141

  28. B.V. Benjamin et al., Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014)

    Article  Google Scholar 

  29. E. Painkras et al., SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid State Circuits 48(8), 1943–1953 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwuka N. Ojiugwo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ojiugwo, C.N., Abdallah, A.B., Thron, C. (2020). Simulation of Biological Learning with Spiking Neural Networks. In: Subair, S., Thron, C. (eds) Implementations and Applications of Machine Learning. Studies in Computational Intelligence, vol 782. Springer, Cham. https://doi.org/10.1007/978-3-030-37830-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37830-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37829-5

  • Online ISBN: 978-3-030-37830-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics