Skip to main content

Improved Plant Species Identification Using Convolutional Neural Networks with Transfer Learning and Test Time Augmentation

  • Chapter
  • First Online:
Implementations and Applications of Machine Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 782))

Abstract

Deep learning in recent times has become a hugely active area within machine learning. Its popularity can be attributed to the huge successes recorded by various deep learning algorithms, notably convolutional neural networks (CNNs), in various identification tasks. Deep learning algorithms are extensively used in the field of computer vision to carry out large-scale identification, and has won many image classification competitions, with performance on a par with human intelligence. CNNs can automatically learn the specific features in a problem domain by concatenating several hidden layers to produce more complex and powerful learning architectures.

The task of identifying plant species is hard enough for botanists, and virtually impossible for non-botanists. Many traditional machine learning techniques for plant identification rely on handcrafted features such as the shape, area, and perimeter of the plant, which can be very tedious to program and are prone to errors. In this chapter we propose a method for recognizing plant species using CNNs. In this method, we trained three deep CNN architectures using the concept of transfer learning, and averaged their predictions using ensemble learning. To further improve results, test time augmentation was applied to the test images, which raised the classification accuracy from 97.89% to 98.52%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Lecun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  2. P.J. Werbos, Applications of advances in nonlinear sensitivity analysis. Syst. Model Optim, 762–770 (1982). https://doi.org/10.1007/BFb0006203

  3. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  4. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Proces. Syst. 25, 097–1105 (2012). https://doi.org/10.1016/j.compmedimag.2014.06.005

    Article  Google Scholar 

  5. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  6. E. Aptoula, B. Yanikoglu, Morphological features for leaf based plant recognition, in 2013 IEEE International Conference on Image Processing, ICIP 2013—Proceedings, (2013), pp. 1496–1499. https://doi.org/10.1109/ICIP.2013.6738307

    Chapter  Google Scholar 

  7. J. Wäldchen, P. Mäder, Plant species identification using computer vision techniques: a systematic literature review. Arch. Comput. Methods Eng. 25(2), 507–543 (2018). https://doi.org/10.1007/s11831-016-9206-z

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Rawat, Z. Wang, Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 29(9), 2352–2449 (2017). https://doi.org/10.1162/NECO_a_00990

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2323 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  10. Y. LeCun, B. Boser, J.S. Denker, R.E. Howard, W. Habbard, L.D. Jackel, D. Henderson, Handwritten digit recognition with a back-propagation network. Dermatol. Surg. 39(1pt2), 149 (1989). https://doi.org/10.1111/dsu.12130

    Article  Google Scholar 

  11. K. Simonyan, & A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition (2014), 1–14. doi:https://doi.org/10.1016/j.infsof.2008.09.005

  12. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. Going deeper with convolutions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 7–12 June (2015), 1–9. doi:https://doi.org/10.1109/CVPR.2015.7298594

  13. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, & Z. Wojna, Rethinking the Inception Architecture for Computer Vision (2015). doi:https://doi.org/10.1109/CVPR.2016.308

  14. M.D. Zeiler, & R. Fergus, Visualizing and understanding convolutional networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8689 LNCS (Part 1), 818–833 (2014). doi:https://doi.org/10.1007/978-3-319-10590-1_53

  15. M.D. Zeiler, & R. Fergus, Visualizing and Understanding Convolutional Networks arXiv:1311.2901v3 [cs.CV] 28 Nov 2013. Computer Vision–ECCV 2014, 8689, 818–833 (2014). doi:https://doi.org/10.1007/978-3-319-10590-1_53

  16. G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors. IEEE Signal Process. Mag. 29(6), 82–97 (2012). https://doi.org/10.1109/MSP.2012.2205597

    Article  Google Scholar 

  17. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(157), 166 (1994)

    Google Scholar 

  18. M. Lin, Q. Chen, & S. Yan, Network In Network (2013) p 1–10. doi:https://doi.org/10.1109/ASRU.2015.7404828

  19. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift Sergey. ArXiv 36(10), 800–805 (2015). https://doi.org/10.1007/s13398-014-0173-7.2

    Article  Google Scholar 

  20. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter, (2015), pp. 1026–1034. https://doi.org/10.1109/ICCV.2015.123

    Chapter  Google Scholar 

  21. G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Jan, (2017), pp. 2261–2269. https://doi.org/10.1109/CVPR.2017.243

    Chapter  Google Scholar 

  22. Y. Bengio, A. Courville, Deep learning of representations for unsupervised and transfer learning. Intel. Syst. Ref. Libr 49(2011), 1–28 (2013). https://doi.org/10.1007/978-3-642-36657-4_1

    Article  Google Scholar 

  23. Plant Seedlings Classification (n.d.) Retrieved August 25, 2019, from https://www.kaggle.com/c/plant-seedlings-classification

  24. T.M. Giselsson, R.N. Jørgensen, Jensen, P. K., M. Dyrmann, & H.S. Midtiby, A Public Image Database for Benchmark of Plant Seedling Classification Algorithms (2017). Retrieved from http://arxiv.org/abs/1711.05458

  25. O. Ronneberger, P. Fischer, & T. Brox U-net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, 234–241 (2015). doi:https://doi.org/10.1007/978-3-319-24574-4_28

  26. Y. LeCun, L. Bottou, G.B. Orr, K.R. Muller, Efficient BackProp. http://Yann.Lecun.Com/Exdb/Publis/Pdf/Lecun-98B.Pdf, 91(1998), 399–404 (2017)

  27. PyTorch (n.d.) Retrieved August 25, 2019, from https://pytorch.org/

  28. T. DeVries, & G.W. Taylor, Improved Regularization of Convolutional Neural Networks with Cutout (2017). doi:https://doi.org/10.1016/j.neuron.2007.06.026

  29. D.P. Kingma, & J. Ba, Adam: A Method for Stochastic Optimization (2014). Retrieved from http://arxiv.org/abs/1412.6980

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Igbineweka, K., Sawyerr, B., Fasina, E. (2020). Improved Plant Species Identification Using Convolutional Neural Networks with Transfer Learning and Test Time Augmentation. In: Subair, S., Thron, C. (eds) Implementations and Applications of Machine Learning. Studies in Computational Intelligence, vol 782. Springer, Cham. https://doi.org/10.1007/978-3-030-37830-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37830-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37829-5

  • Online ISBN: 978-3-030-37830-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics