Skip to main content

Heuristic Clustering Algorithms

  • Chapter
  • First Online:
Partitional Clustering via Nonsmooth Optimization

Part of the book series: Unsupervised and Semi-Supervised Learning ((UNSESUL))

  • 919 Accesses

Abstract

This chapter is devoted to the most popular heuristic partitional clustering algorithms such as k-means, k-medians, and k-medoids. In addition, we give an overview of some clustering algorithms based on mixture models, self-organizing map, and fuzzy clustering. The description of these algorithms as well as their flowcharts is presented. The convergence results for the k-means and the k-medians algorithms using nonsmooth optimization techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Hinneburg, A., Keim, D.: On the surprising behavior of distance metrics in high dimensional space. In: ICDT ’01 Proceedings of the 8th International Conference on Database Theory, pp. 420–434 (2001)

    Google Scholar 

  2. Al-Daoud, M.B., Roberts, S.A.: New methods for the initialisation of clusters. Pattern Recogn. Lett. 17(5), 451–455 (1996)

    Article  Google Scholar 

  3. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

    Article  MATH  Google Scholar 

  4. Anderberg, M.R.: Cluster Analysis for Applications. Academic, New York, NY (1973)

    MATH  Google Scholar 

  5. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA ’07 Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)

    Google Scholar 

  6. Ball, G.H., Hall, D.J.: ISODATA, a novel method of data analysis and pattern classification. Technical Report NTIS AD 699616, Stanford Research Institute, Menlo Park, CA (1965)

    Google Scholar 

  7. Ball, G.H., Hall, D.J.: A clustering technique for summarizing multivariate data. Behav. Sci. 12(2), 153–155 (1967)

    Article  Google Scholar 

  8. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypesphere using von Mises-Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Baudry, J.P., Raftery, A., Celeux, G., Lo, K., Gottardo, R.G.: Combining mixture components for clustering. J. Comput. Graph. Stat. 19(2), 332–353 (2010)

    Article  MathSciNet  Google Scholar 

  10. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  11. Biernacki, C., Celeux, G., Gold, E.M.: Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725 (2000)

    Article  Google Scholar 

  12. Bobrowski, L., Bezdek, J.C.: c-means clustering with the L 1 and L ∞ norms. IEEE Trans. Syst. Man Cybern. 21, 545–554 (1991)

    Google Scholar 

  13. Bock, H.H.: Probabilistic models in cluster analysis. Comput. Stat. Data Anal. 23, 5–28 (1996)

    Article  MATH  Google Scholar 

  14. Carmichael, J., Sneath, P.: Taxometric maps. Syst. Zool. 18, 402–415 (1969)

    Article  Google Scholar 

  15. Carpenter, G.A., Grossberg, S.: A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vis. Graph. Image Process. 37, 54–115 (1987)

    Article  MATH  Google Scholar 

  16. Carpenter, G.A., Grossberg, S.: Art3: hierarchical search using chemical transmitters in self organising pattern recognition architectures. Neural Netw. 3, 129–152 (1990)

    Article  Google Scholar 

  17. Carpenter, G.A., Grossberg, S., Reynolds, J.H.: ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Netw. 4, 565–588 (1991)

    Article  Google Scholar 

  18. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)

    Article  Google Scholar 

  19. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood for incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MATH  Google Scholar 

  20. De Souza, R.M.C.R., de Carvalho, F.A.T.: Clustering of interval data based on city-block distances. Pattern Recogn. Lett. 25, 353–365 (2004)

    Article  Google Scholar 

  21. Doherty, K.A.J., Adams, R.G., Davey, N.: Non-Euclidean norms and data normalisation. In: Proceedings of ESANN, pp. 181–186 (2004)

    Google Scholar 

  22. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  23. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3, 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

    Article  Google Scholar 

  25. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768–769 (1965)

    Google Scholar 

  26. Ghorbani, M.: Maximum entropy-based fuzzy clustering by using L 1-norm space. Turk. J. Math. 29, 431–438 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38(2–3), 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hanilci, C., Ertas, F.: Comparison of the impact of some Minkowski metrics on VQ/GMM based speaker recognition. Comput. Electr. Eng. 37, 41–56 (2011)

    Article  Google Scholar 

  29. Hansen, P., Mladenovic, N.: J-means: a new local search heuristic for minimum sum of squares clustering. Pattern Recogn. 34(2), 405–413 (2001)

    Article  MATH  Google Scholar 

  30. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28, 100–108 (1979)

    Google Scholar 

  31. Ismkhan, H.: i − k-means-+: an iterative clustering algorithm based on an enhanced version of the k-means. Pattern Recogn. 79, 402–413 (2018)

    Google Scholar 

  32. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  33. Jajuga, K.: A clustering method based on the L 1-norm. Comput. Stat. Data Anal. 5, 357–371 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Katsavounidis, I., Kuo, C.-C.J., Zhang, Z.: A new initialization technique for generalized Lloyd iteration. IEEE Signal Process. Lett. 1(10), 144–146 (1994)

    Article  Google Scholar 

  35. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Dodge, Y. (ed.) Statistical Data Analysis Based on the L 1-Norm and Related Methods, pp. 405–416. North-Holland, Amsterdam (1987)

    Google Scholar 

  36. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley Series in Probability and Statistics. Wiley, New York (1990)

    Book  MATH  Google Scholar 

  37. Kohonen, T.: Self-organization formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MATH  Google Scholar 

  38. Kohonen, T.: Self Organization and Associative Memory. Springer Information Sciences Series, 3rd edn. Springer, Heidelberg (1989)

    Google Scholar 

  39. Li, J.: Clustering based on multi-layer mixture model. J. Comput. Graph. Stat. 14(3), 547–568 (2005)

    Article  Google Scholar 

  40. Likas, A., Vlassis, M., Verbeek, J.: The global k-means clustering algorithm. Pattern Recogn. 36(2), 451–461 (2003)

    Article  Google Scholar 

  41. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  42. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds.) Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley, CA (1967)

    Google Scholar 

  43. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is NP-hard. Theor. Comput. Sci. 442, 13–21 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New York (1997)

    MATH  Google Scholar 

  45. McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  46. Melnykov, V., Maitra, R.: Finite mixture models and model-based clustering. Stat. Surv. 4, 80–116 (2010). Digital Repository, Statistics Publications, Iowa State University

    Google Scholar 

  47. Mohebi, E., Bagirov, A.M.: A convolutional recursive modified self organizing map for handwritten digits recognition. Neural Netw. 60, 104–118 (2014)

    Article  MATH  Google Scholar 

  48. Mohebi, E., Bagirov, A.M.: Constrained self organizing maps for data clusters visualization. Neural Process. Lett. 43(3), 849–869 (2016)

    Article  Google Scholar 

  49. Newcomb, S.: A generalized theory of the combination of observations so as to obtain the best result. Am. J. Math. 8(4), 343–366 (1886)

    Article  MathSciNet  MATH  Google Scholar 

  50. Park, H.S., Jun, C.H.: A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl. 36(2), 3336–3341 (2009)

    Article  Google Scholar 

  51. Pearson, K.: Contribution to the mathematical theory of evolution. Philos. Trans. R. Soc. 185, 71–110 (1894)

    MATH  Google Scholar 

  52. Pelleg, D., Moore, A.W.: X-means: extending k-means with efficient estimation of the number of clusters. In: Langley, P. (ed.) Proceedings of the Seventeenth International Conference on Machine Learning, pp. 727–734. Morgan Kaufmann, San Francisco, CA (2000)

    Google Scholar 

  53. Pizzuti, C., Talia, D., Vonella, G.: A divisive initialisation method for clustering algorithms. In: Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 484–491 (1999)

    Google Scholar 

  54. Quandt, R.E.: A new approach to estimating switching regressions. J. Am. Stat. Assoc. 67(338), 306–310 (1972)

    Article  MATH  Google Scholar 

  55. Redmond, S.J., Heneghan, C.: A method for initialising the k-means clustering algorithm using kd-trees. Pattern Recogn. Lett. 28(8), 965–973 (2007)

    Article  Google Scholar 

  56. Sabo, K., Scitovski, R., Vazler, I.: One-dimensional center-based L 1-clustering method. Optim. Lett. 7(1), 5–22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Selim, S.Z., Ismail, M.A.: k-means-type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 6(1), 81–87 (1984)

    Google Scholar 

  58. Sethi, I., Jain, A.K. (eds.): Artificial Neural Networks and Pattern Recognition: Old and new Connections. Elsevier, New York (1991)

    MATH  Google Scholar 

  59. Shang, Y., Wah, B.W.: Global optimization for neural network training. IEEE Comput. 29(3), 31–44 (1996)

    Article  Google Scholar 

  60. Späth, H.: Algorithm 30: L 1 cluster analysis. Computing 16(4), 379–387 (1976)

    Article  MATH  Google Scholar 

  61. Späth, H.: Cluster Analysis Algorithms for Data Reduction and Classification of Objects. Computers and Their applications. Ellis Horwood Limited, Chichester (1980)

    MATH  Google Scholar 

  62. Späth, H.: The Cluster Dissection and Analysis Theory FORTRAN Programs Examples. Prentice-Hall, Upper Saddle River, NJ (1985)

    MATH  Google Scholar 

  63. Steinhaus, H.: Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci. 4(12), 801–804 (1956)

    MathSciNet  MATH  Google Scholar 

  64. Van der Laan, M., Pollard, K., Bryan, J.: A new partitioning around medoids algorithm. J. Stat. Comput. Simul. 73(8), 575–584 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. Venkateswarlu, N., Raju, P.: Fast ISODATA clustering algorithms. Pattern Recogn. 25(3), 335–342 (1992)

    Article  Google Scholar 

  66. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnes est minimum. Tohoku Math. J. 43, 355–386 (1937)

    MATH  Google Scholar 

  67. Weiszfeld, E., Plastria, F.: On the point for which the sum of the distances to n given points is minimum. Ann. Oper. Res. 167(1), 7–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wolfe, J.H.: Pattern clustering by multivariate mixture analysis. Multivar. Behav. Res. 5(3), 329–350 (1970)

    Article  Google Scholar 

  69. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2007)

    Article  Google Scholar 

  70. Yang, M.-Sh., Hung, W.-L., Chung, T.-I.: Alternative fuzzy clustering algorithms with L 1-norm and covariance matrix. In: Blanc-Talon J., Philips W., Popescu D., Scheunders P. (eds) Advanced Concepts for Intelligent Vision Systems, ACIVS 2006. Lecture Notes in Computer Science, vol. 4179, pp. 654–665. Springer, Berlin/Heidelberg, (2006)

    Google Scholar 

  71. Zhang, J., Peng, L., Zhao, X., Kuruoglu, E.E.: Robust data clustering by learning multi-metric L q-norm distances. Expert Syst. Appl. 39(1), 335–349 (2012)

    Article  Google Scholar 

  72. Mohebi, E., Bagirov, A.M.: Modified self organising maps with a new topology and initialisation algorithm. J. Exp. Theor. Artif. Intell. 27(3), 351–372 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

M. Bagirov, A., Karmitsa, N., Taheri, S. (2020). Heuristic Clustering Algorithms. In: Partitional Clustering via Nonsmooth Optimization. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-37826-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37826-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37825-7

  • Online ISBN: 978-3-030-37826-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics