Skip to main content

Toxicity Management for Upper Abdomen Tumors in Radiation Oncology

  • Chapter
  • First Online:
Prevention and Management of Acute and Late Toxicities in Radiation Oncology

Abstract

Radiotherapy is an important component of local treatment in curative or palliative setting for abdominal malignancies. Due to surrounding normal tissues that are highly radiosensitive in the upper abdomen, the radiation-induced acute or late toxicities are very important after radiotherapy. Radiation-induced toxicities may negatively affect the quality of life and even survival of patients. Therefore, toxicities and related factors should be taken care during the planning section of radiotherapy. In this chapter, organs-at-risk delineations and relationships between dose–volume parameters and radiation-induced toxicities of upper abdominal organs with their managements will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The University of Iowa College of Medicine University of Iowa. College of medicine: couinaud classification. http://dpi.radiology.uiowa.edu/nlm/app/livertoc/liver/8seg.html.

  2. Ingold JA, Reed GB, Kaplan HS, Bagshaw MA. Radiation hepatitis. Am J Roentgenol Radium Therapy, Nucl Med. 1965;93:200–8.

    CAS  Google Scholar 

  3. Clement B, Grimaud JA, Campion JP, et al. Cell types involved in collagen and fibronectin production in normal and fibrotic human liver. Hepatology. 1986;6:225–34.

    Article  CAS  PubMed  Google Scholar 

  4. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011;25:195–206. https://doi.org/10.1016/j.bpg.2011.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anscher MS, Cracker IR, Jirtle RL. Transforming growth factor-β1 expression in irradiated liver. Radiat Res. 1990;122:77–85.

    Article  CAS  PubMed  Google Scholar 

  6. Castilla A, Prieto J, Fausto N. Transforming growth factor β I and alpha in chronic liver disease—effects of interferon alpha therapy. N Engl J Med. 1991;324:993–40. https://doi.org/10.1056/NEJM199104043241401.

    Article  Google Scholar 

  7. Seidensticker M, Seidensticker R, Damm R, et al. Prospective randomized trial of enoxaparin, pentoxifylline and ursodeoxycholic acid for prevention of radiation-induced liver toxicity. PLoS One. 2014;9:e112731. https://doi.org/10.1371/journal.pone.0112731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christiansen H, Saile B, Neubauer-Saile K, et al. Irradiation leads to susceptibility of hepatocytes to TNF-alpha mediated apoptosis. Radiother Oncol. 2004;72:291–6. https://doi.org/10.1016/j.radonc.2004.07.001.

    Article  CAS  PubMed  Google Scholar 

  9. DeLeve LD, Shulman HM, McDonald GB. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (venoocclusive disease). Semin Liver Dis. 2002;22:27–42. https://doi.org/10.1055/s-2002-23204.

    Article  PubMed  Google Scholar 

  10. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31:1237–48. https://doi.org/10.1016/0360-3016(94)00418-K.

    Article  CAS  PubMed  Google Scholar 

  11. Ogata K, Hizawa K, Yoshida M, Kitamuro T, Akagi G, Kagawa K, et al. Hepatic injury following irradiation–a morphologic study. Tokushima J Exp Med. 1963;10:240–51.

    CAS  PubMed  Google Scholar 

  12. Reed GB Jr, Cox AJ Jr. The human liver after radiation injury. A form of veno-occlusive disease. Am J Pathol. 1966;48:597–11.

    PubMed  PubMed Central  Google Scholar 

  13. Sempoux C, Horsmans Y, Geubel A, Fraikin J, Van Beers BE, Gigot JF, et al. Severe radiation-induced liver disease following localized radiation therapy for biliopancreatic carcinoma: activation of hepatic stellate cells as an early event. Hepatology. 1997;26:128–34. https://doi.org/10.1002/hep.510260117.

    Article  CAS  PubMed  Google Scholar 

  14. Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76:S94–100. https://doi.org/10.1016/j.ijrobp.2009.06.092.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cheng JC, Wu JK, Lee PC, Liu HS, Jian JJ, Lin YM, et al. Biologic susceptibility of hepatocellular carcinoma patients treated withradiotherapy to radiation-induced liver disease. Int J Radiat Oncol Biol Phys. 2004;60:1502–9. https://doi.org/10.1016/j.ijrobp.2004.05.048.

    Article  PubMed  Google Scholar 

  16. Guha C, Sharma A, Gupta S, Alfieri A, Gorla GR, Gagandeep S, et al. Amelioration of radiation-induced liver damage in partially hepatectomized rats by hepatocyte transplantation. Cancer Res. 1999;59:5871–4.

    CAS  PubMed  Google Scholar 

  17. Lawrence TS, Robertson JM, Anscher MS, et al. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31:1237–48. https://doi.org/10.1016/0360-3016(94)00418-K.

    Article  CAS  PubMed  Google Scholar 

  18. Austin-Seymour MM, Chen GT, Castro JR, et al. Dose volume histogram analysis of liver radiation tolerance. Int J Radiat Oncol Biol Phys. 1986;12:31–5.

    Article  CAS  PubMed  Google Scholar 

  19. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22. https://doi.org/10.1016/0360-3016(91)90171-y.

    Article  CAS  PubMed  Google Scholar 

  20. Guha C, Kavanagh BD. Hepatic radiation toxicity: avoidance and amelioration. Semin Radiat Oncol. 2011;21:256–63. https://doi.org/10.1016/j.semradonc.2011.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jackson A, Ten Haken RK, Robertson JM, et al. Analysis of clinical complication data for radiation hepatitis using a parallel architecture model. Int J Radiat Oncol Biol Phys. 1995;31:883–91. https://doi.org/10.1016/0360-3016(94)00471-4.

    Article  CAS  PubMed  Google Scholar 

  22. Shaffer JL, Osmundson EC, Visser BC, et al. Stereotactic body radiation therapy and central liver toxicity: a case report. Pract Radiat Oncol. 2015;5:282–5. https://doi.org/10.1016/j.prro.2015.04.011.

    Article  PubMed  Google Scholar 

  23. Osmundson EC, Wu Y, Luxton G, et al. Predictors of toxicity associated with stereotactic body radiation therapy to the central hepatobiliary tract. Int J Radiat Oncol Biol Phys. 2015;91:986–94. https://doi.org/10.1016/j.ijrobp.2014.11.028.

    Article  PubMed  Google Scholar 

  24. Toesca DA, Osmundson EC, Eyben RV, et al. Central liver toxicity after SBRT: an expanded analysis and predictive nomogram. Radiother Oncol. 2017;122:130–6. https://doi.org/10.1016/j.radonc.2016.10.024.

    Article  PubMed  Google Scholar 

  25. Schefter TE, Kavanagh BD, Timmerman RD, et al. A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys. 2005;62:1371–8.

    Article  PubMed  Google Scholar 

  26. Penna C, Nordlinger B. Colorectal metastasis (liver and lung). Surg Clin North Am. 2002;82:1075–90. https://doi.org/10.1016/j.ijrobp.2005.01.002.

    Article  PubMed  Google Scholar 

  27. Xu ZY, Liang SX, Zhu J, et al. Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma. Int J Radiat Oncol Biol Phys. 2006;65:189–95. https://doi.org/10.1016/j.ijrobp.2005.11.034.

    Article  PubMed  Google Scholar 

  28. Liang SX, Zhu XD, Xu ZY, et al. Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma: the risk factors and hepatic radiation tolerance. Int J Radiat Oncol Biol Phys. 2006;65:426–34. https://doi.org/10.1016/j.ijrobp.2005.12.031.

    Article  PubMed  Google Scholar 

  29. Kim JH, Park JW, Kim TH, et al. Hepatitis B virus reactivation after three-dimensional conformal radiotherapy in patients with hepatitis B virus-related hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2007;69:813–9. https://doi.org/10.1016/j.ijrobp.2007.04.005.

    Article  PubMed  Google Scholar 

  30. Chou CH, Chen PJ, Lee PH, et al. Radiation-induced hepatitis B virus reactivation in liver mediated by the bystander effect from irradiated endothelial cells. Clin Cancer Res. 2007;13:851–7. https://doi.org/10.1158/1078-0432.CCR-06-2459.

    Article  CAS  PubMed  Google Scholar 

  31. Huang W, Zhang W, Fan M, et al. Risk factors for hepatitis B virus reactivation after conformal radiotherapy in patients with hepatocellular carcinoma. Cancer Sci. 2014;105:697–703. https://doi.org/10.1111/cas.12400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herfarth KK, Debus J, Wannenmacher M. Stereotactic radiation therapy of liver metastases: update of the initialphase-I/II trial. Front Radiat Ther Oncol. 2004;38:100–5.

    Article  PubMed  Google Scholar 

  33. Wulf J, Hädinger U, Oppitz U, Olshausen B, Flentje M. Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotacticbody frame. Radiother Oncol. 2000;57(2):225–36. https://doi.org/10.1016/S0167-8140(00)00226-7.

    Article  CAS  PubMed  Google Scholar 

  34. Mendez Romero A, Bakri L, Seppenwoolde Y, et al. Inter- and intraobserver variability in daily tumor setup usingcontrast-enhanced CT scans for patient positioning duringstereotactic body radiation therapy for liver metastases. Int J Radiat Oncol. 2013;87(2 Suppl):S318. https://doi.org/10.1016/j.ijrobp.2013.06.836.

    Article  Google Scholar 

  35. Wu DH, Liu L, Chen LH. Therapeutic effects and prognostic factors in three-dimensional conformal radiotherapy combined with transcatheter arterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol. 2004;10:2184–9. https://doi.org/10.3748/wjg.v10.i15.2184.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shim SJ, Seong J, Lee IJ, et al. Radiation-induced hepatic toxicity after radiotherapy combined with chemotherapy for hepatocellular carcinoma. Hepatol Res. 2007;37:906–13. https://doi.org/10.1111/j.1872-034X.2007.00149.x.

    Article  CAS  PubMed  Google Scholar 

  37. Yu JI, Park JW, Park HC, et al. Clinical impact of combined transarterial chemoembolization and radiotherapy for advanced hepatocellular carcinoma with portal vein tumor thrombosis: an external validation study. Radiother Oncol. 2016;118:408–15. https://doi.org/10.1016/j.radonc.2015.11.019.

    Article  PubMed  Google Scholar 

  38. Robinson SM, Mann DA, Manas DM, et al. The potential contribution of tumour-related factors to the development of FOLFOX-induced sinusoidal obstruction syndrome. Br J Cancer. 2013;109:2396–403. https://doi.org/10.1038/bjc.2013.604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blomgren H, Lax I, Näslund I, Svanström R. Stereotactic highdose fraction radiation therapy of extracranial tumors usingan accelerator. Clinical experience of the first thirty-onepatients. Acta Oncol. 1995;34(6):861–70. https://doi.org/10.3109/02841869509127197.8.

    Article  CAS  PubMed  Google Scholar 

  40. Schefter TE, Kavanagh BD, Timmerman RD, Cardenes HR, Baron A, Gaspar LE. A phase I trial of stereotactic bodyradiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys. 2005;62(5):1371–8. https://doi.org/10.1016/j.ijrobp.2005.01.002.18.

    Article  PubMed  Google Scholar 

  41. McCammon R, Schefter TE, Gaspar LE, Zaemisch R, Gravdahl D, Kavanagh B. Observation of a dose-control relationship forlung and liver tumors after stereotactic body radiationtherapy. Int J Radiat Oncol Biol Phys. 2009;73(1):112–8. https://doi.org/10.1016/j.ijrobp.2008.03.062.19.

    Article  PubMed  Google Scholar 

  42. Rusthoven KE, Kavanagh BD, Cardenes H, et al. Multi-institutional phase I/II trial of stereotactic bodyradiation therapy for liver metastases. J Clin Oncol. 2009;27(10):1572–8. https://doi.org/10.1200/JCO.2008.19.6329.

    Article  PubMed  Google Scholar 

  43. Goodman KA, Wiegner EA, Maturen KE, et al. Dose-escalationstudy of single-fraction stereotactic body radiotherapy forliver malignancies. Int J Radiat Oncol Biol Phys. 2010;78(2):486–93. https://doi.org/10.1016/j.ijrobp.2009.08.020.

    Article  PubMed  Google Scholar 

  44. Tse RV, Hawkins M, Lockwood G, et al. Phase I study ofindividualized stereotactic body radiotherapy forhepatocellular carcinoma and intrahepaticcholangiocarcinoma. J Clin Oncol. 2008;26(4):657–64. https://doi.org/10.1200/JCO.2007.14.3529.

    Article  PubMed  Google Scholar 

  45. Andolino DL, Forquer JA, Henderson MA, et al. Chest walltoxicity after stereotactic body radiotherapy for malignantlesions of the lung and liver. Int J Radiat Oncol Biol Phys. 2011;80(3):692–7. https://doi.org/10.1016/j.ijrobp.2010.03.020.

    Article  PubMed  Google Scholar 

  46. Andratschke NH, Nieder C, Heppt F, Molls M, Zimmermann F. Stereotactic radiation therapy for liver metastases: factorsaffecting local control and survival. Radiat Oncol. 2015;10:69. https://doi.org/10.1186/s13014-015-0369-9.11.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bujold A, Massey CA, Kim JJ, Brierley J, Cho C, Wong RK, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol. 2013;31(13):1631–9. https://doi.org/10.1200/JCO.2012.44.1659.

    Article  PubMed  Google Scholar 

  48. Sanuki N, Takeda A, Oku Y, et al. Threshold doses for focalliver reaction after stereotactic ablative body radiationtherapy for small hepatocellular carcinoma depend on liverfunction: evaluation on magnetic resonance imaging withGd-EOB-DTPA. Int J Radiat Oncol Biol Phys. 2014;88(2):306–11. https://doi.org/10.1016/j.ijrobp.2013.10.045.

    Article  PubMed  Google Scholar 

  49. Jang WI, Kim MS, Bae SH, Cho CK, Yoo HJ, Seo YS, et al. High-dose stereotactic body radiotherapy correlates increased local control and overall survival in patients with inoperable hepatocellular carcinoma. Radiat Oncol. 2013;8:250. https://doi.org/10.1186/1748-717X-8-250.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yoon SM, Lim YS, Park MJ, Kim SY, Cho B, Shim JH, et al. Stereotactic body radiation therapy as an alternative treatment for small hepatocellular carcinoma. PLoS One. 2013;8(11):e79854. https://doi.org/10.1371/journal.pone.0079854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee MT, Kim JJ, Dinniwell R, et al. Phase I study ofindividualized stereotactic body radiotherapy of livermetastases. J Clin Oncol. 2009;27(10):1585–91. https://doi.org/10.1200/JCO.2008.20.0600.

    Article  PubMed  Google Scholar 

  52. Burman C, Kutcher GJ, Emami B, et al. Fitting of normal tissue tolerance data to an ana-lytic function. Int J Radiat Oncol Biol Phys. 1991;21:123–35. https://doi.org/10.1016/0360-3016(91)90172-z.

    Article  CAS  PubMed  Google Scholar 

  53. Lawrence TS, Ten Haken RK, Kessler ML, et al. The use of 3-D dose volume analysis to predict radiation hepatitis. Int J Radiat Oncol Biol Phys. 1992;23:781–8.

    Article  CAS  PubMed  Google Scholar 

  54. Dawson LA, Ten Haken RK, Lawrence TS. Partial irradiation of the liver. Semin Radiat Oncol. 2001;11:240–6.

    Article  CAS  PubMed  Google Scholar 

  55. Lee IJ, Seong J, Shim SJ, Han KH. Radiotherapeutic parameters predictive of liver complications induced by liver tumor radiotherapy. Int J Radiat Oncol Biol Phys. 2009;73:154–8. https://doi.org/10.1016/j.ijrobp.2008.04.035.

    Article  PubMed  Google Scholar 

  56. Chen YX, Zeng ZC, Sun J, Zeng HY, Huang Y, Zhang ZY. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J Radiat Res. 2015;56:700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mouiseddine M, Francois S, Souidi M, Chapel A. Intravenous human mesenchymal stem cells transplantation in NOD/SCID mice preserve liver integrity of irradiation damage. Methods Mol Biol. 2012;826:179–88.

    Article  CAS  PubMed  Google Scholar 

  58. Anscher MS, Crocker IR, Jirtle RL. Transforming growth factor-beta 1 expression in irradiated liver. Radiat Res. 1990;122:77–85.

    Article  CAS  PubMed  Google Scholar 

  59. Du SS, Qiang M, Zeng ZC, Zhou J, Tan YS, Zhang ZY, et al. Radiation-induced liver fibrosis is mitigated by gene therapy inhibiting transforming growth factor-beta signaling in the rat. Int J Radiat Oncol Biol Phys. 2010;78:1513–23.

    Article  CAS  PubMed  Google Scholar 

  60. Wang S, Lee Y, Kim J, Hyun J, Lee K, Kim Y, et al. Potential role of hedgehog pathway in liver response to radiation. PLoS One. 2013;8:e74141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang S, Hyun J, Youn B, Jung Y. Hedgehog signaling regulates the repair response in mouse liver damaged by irradiation. Radiat Res. 2013;179:69–75.

    Article  CAS  PubMed  Google Scholar 

  62. Symon Z, Levi M, Ensminger WD, Smith DE, Lawrence TS. Selective radioprotection of hepatocytes by systemic and portal vein infusions of amifostine in a rat liver tumor model. Int J Radiat Oncol Biol Phys. 2001;50:473–8. https://doi.org/10.1016/s0360-3016(01)01522-x.

    Article  CAS  PubMed  Google Scholar 

  63. Taysi S, Koc M, Buyukokuroglu ME, Altinkaynak K, Sahin YN. Melatonin reduces lipid peroxidation and nitric oxide during irradiation-induced oxidative injury in the rat liver. J Pineal Res. 2003;34:173–7. https://doi.org/10.1034/j.1600-079X.2003.00024.x.

    Article  CAS  PubMed  Google Scholar 

  64. Glatstein E, Fajardo LF, Brown JM. Radiation injury in the mouse kidney-I. Sequential light microscopic study. Int J Radiat Oncol Biol Phys. 1977;2(9–10):933–43. https://doi.org/10.1016/0360-3016(77)90191-2.

    Article  CAS  PubMed  Google Scholar 

  65. Moulder JE, Fish BL. Late toxicity of total body irradiation with bone marrow transplantation in a rat model. Int J Radiat Oncol Biol Phys. 1989;16(6):1501–9. https://doi.org/10.1016/0360-3016(89)90955-3.

    Article  CAS  PubMed  Google Scholar 

  66. Rubenstone AI, Fitch LB. Radiation nephritis. A clinicopathologic study. Am J Med. 1962;33:545–54. https://doi.org/10.1016/0002-9343(62)90265-6.

    Article  CAS  PubMed  Google Scholar 

  67. Jaenke RS, Robbins ME, Bywaters T, Whitehouse E, Rezvani M, Hopewell JW. Capillary endothelium. Target site of renal radiation injury. Lab Investig. 1993;68(4):396–405.

    CAS  PubMed  Google Scholar 

  68. Keane WF, Crosson JT, Staley NA, Anderson WR, Shapiro FL. Radiation-induced renal disease. A clinicopathologic study. Am J Med. 1976 Jan;60(1):127–37. https://doi.org/10.1016/0002-9343(76)90541-6.

    Article  CAS  PubMed  Google Scholar 

  69. Krochak RJ, Baker DG. Radiation nephritis. Clinical manifestations and pathophysiologic mechanisms. Urology. 1986;27(5):389–93. https://doi.org/10.1016/0090-4295(86)90399-7.

    Article  CAS  PubMed  Google Scholar 

  70. Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S108–15. https://doi.org/10.1016/j.ijrobp.2009.02.089.

    Article  PubMed  Google Scholar 

  71. Thompson PL, Mackay IR, Robson GS, et al. Late radiation nephritis after gastric x-irradiation for peptic ulcer. Q J Med. 1971;40:145–57.

    CAS  PubMed  Google Scholar 

  72. Verheij M, Dewit LG, Valdés Olmos RA, Arisz L. Evidence for a renovascular component in hypertensive patients with late radiation nephropathy. Int J Radiat Oncol Biol Phys. 1994;30(3):677–83. https://doi.org/10.1016/0360-3016(92)90955-h.

    Article  CAS  PubMed  Google Scholar 

  73. Cohen EP, Robbins ME. Radiation nephropathy. Semin Nephrol. 2003;23:486–99.

    Article  PubMed  Google Scholar 

  74. Cruz DN, Perazella MA, Mahnensmith RL. Bone marrow transplant nephropathy: a case report and review of the literature. J Am Soc Nephrol. 1997;8(1):166–73.

    CAS  PubMed  Google Scholar 

  75. Flentje M, Hensley F, Gademann G, Menke M, Wannenmacher M. Renal tolerance to nonhomogenous irradiation: comparison of observed effects to predictions of normal tissue complication probability from different biophysical models. Int J Radiat Oncol Biol Phys. 1993;27(1):25–30. https://doi.org/10.1016/0360-3016(93)90417-t.

    Article  CAS  PubMed  Google Scholar 

  76. Ahmad NR, Huq MS, Corn BW. Respiration-induced motion of the kidneys in whole abdominal radiotherapy: implications for treatment planning and late toxicity. Radiother Oncol. 1997;42:87–90. https://doi.org/10.1016/s0167-8140(96)01859-2.

    Article  CAS  PubMed  Google Scholar 

  77. Reiff JE, Werner-Wasik M, Valicenti RK, Huq MS. Changes in the size and location of kidneys from the supine to standing positions and the implications for block placement during total body irradiation. Int J Radiat Oncol Biol Phys. 1999;45(2):447–9. https://doi.org/10.1016/s0360-3016(99)00208-4.

    Article  CAS  PubMed  Google Scholar 

  78. Cheng J, Schultheiss T, Wong J. Impact of drug therapy, radiation dose and dose rate on renal toxicity following bone marrow transplantation. Int J Radiat Oncol Biol Phys. 2008;71(5):1436–43. https://doi.org/10.1016/j.ijrobp.2007.12.009.

    Article  CAS  PubMed  Google Scholar 

  79. Cohen EP. Radiation nephropathy after bone marrow transplantation. Kidney Int. 2000;58:903–18. https://doi.org/10.1046/j.1523-1755.2000.00241.x.

    Article  CAS  PubMed  Google Scholar 

  80. Luxton RW. Radiation nephritis: along termstudy of 54 patients. Lancet. 1961;2(7214):1221–4. https://doi.org/10.1016/s0140-6736(61)92590-9.

    Article  CAS  PubMed  Google Scholar 

  81. Luxton RW. Radiation nephritis. Q J Med. 1953;22(86):215–42.

    CAS  PubMed  Google Scholar 

  82. Köst S, Dörr W, Keinert K, Glaser FH, Endert G, Herrmann T. Effect of dose and dose-distribution in damage to the kidney following abdominal radiotherapy. Int J Radiat Biol. 2002;78(8):695–702. https://doi.org/10.1080/09553000210134791.

    Article  CAS  PubMed  Google Scholar 

  83. Willett CG, Tepper JE, Orlow EL, Shipley WU. Renal complications secondary to radiation treatment of upper abdominal malignancies. Int J Radiat Oncol Biol Phys. 1986;12(9):1601–4. https://doi.org/10.1016/0360-3016(86)90284-1.

    Article  CAS  PubMed  Google Scholar 

  84. Jansen EP, Saunders MP, Boot H, Oppedijk V, Dubbelman R, Porritt B, et al. Prospective study on late renal toxicity following postoperative chemoradiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys. 2007;67(3):781–5. https://doi.org/10.1016/j.ijrobp.2006.09.012.

    Article  CAS  PubMed  Google Scholar 

  85. May KS, Yang GY, Khushalani NI, Chandrasekhar R, Wilding GE, Flaherty L, et al. Association of Technetium(99m) MAG-3 renal scintigraphy with change in creatinine clearance following chemoradiation to the abdomen in patients with gastrointestinal malignancies. J Gastrointest Oncol. 2010;1(1):7–15. https://doi.org/10.3978/j.issn.2078-6891.2010.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Crummy AB, Hellman S, Stansel HC, Hukill PB. Renal hypertension secondary to unilateral radiation damage relieved by nephrectomy. Radiology. 1965;84:108–11. https://doi.org/10.1148/84.1.108.

    Article  PubMed  Google Scholar 

  87. Kala J. Radiation-induced kidney injury. J Onco-Nephrol. 2019;3(3):160–7. https://doi.org/10.1177/2399369319865271.

    Article  Google Scholar 

  88. Diavolitsis VM, Rademaker A, Boyle J, Kang Z, Kiel K, Mulcahy M, et al. Change in creatinine clearance over time following upper abdominal irradiation: a dose-volume histogram multivariate analysis. Am J Clin Oncol. 2011;34(1):53–7. https://doi.org/10.1097/COC.0b013e3181d27080.

    Article  CAS  PubMed  Google Scholar 

  89. Rubin P, Casarett G. Radiation effect and tolerance of normal tissue. Front Radiat Ther Oncol. 1971;5:1–16.

    Article  Google Scholar 

  90. Cohen L, Creditor M. Iso-effect tables for tolerance of irradiated normal human tissues. Int J Radiat Oncol Biol Phys. 1983;9(2):233–41. https://doi.org/10.1016/0360-3016(83)90105-0.

    Article  CAS  PubMed  Google Scholar 

  91. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22. https://doi.org/10.1016/0360-3016(91)90171-y.

    Article  CAS  PubMed  Google Scholar 

  92. Milano MT, Constine LS, Okunieff P. Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol. 2007;17(2):131–40. https://doi.org/10.1016/j.semradonc.2006.11.009.

    Article  PubMed  Google Scholar 

  93. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9. https://doi.org/10.1016/j.ijrobp.2009.07.1754.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Welz S, Hehr T, Kollmannsberger C, Bokemeyer C, Belka C, Budach W. Renal toxicity of adjuvant chemoradiotherapy with cisplatin in gastric cancer. Int J Radiat Oncol Biol Phys. 2007;69(5):1429–35. https://doi.org/10.1016/j.ijrobp.2007.05.021.

    Article  CAS  PubMed  Google Scholar 

  95. Varlotto JM, Gerszten K, Heron DE, Comerci J, Gautam S, Selvaraj R, et al. The potential nephrotoxic effects of intensity modulated radiotherapy delivered to the para-aortic area of women with gynecologic malignancies: preliminary results. Am J Clin Oncol. 2006;29(3):281–9. https://doi.org/10.1097/01.coc.0000217828.95729.b5.

    Article  PubMed  Google Scholar 

  96. May KS, Khushalani NI, Chandrasekhar R, Wilding GE, Iyer RV, Ma WW, et al. Analysis of clinical and dosimetric factors associated with change in renal function in patients with gastrointestinal malignancies after chemoradiation to the abdomen. Int J Radiat Oncol Biol Phys. 2010;76(4):1193–8. https://doi.org/10.1016/j.ijrobp.2009.03.002.

    Article  PubMed  Google Scholar 

  97. Moulder JE, Fish BL, Cohen EP. Treatment of radiation nephropathy with ACE inhibitors and AII type-1 and type-2 receptor antagonists. Curr Pharm Des. 2007;13:1317–25. https://doi.org/10.2174/138161207780618821.

    Article  CAS  PubMed  Google Scholar 

  98. Cohen EP, Fish BL, Sharma M, et al. Role of the angiotensin II type-2 receptor in radiation nephropathy. Transl Res. 2007;150:106–15. https://doi.org/10.1016/j.trsl.2007.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cohen EP, Hussain S, Moulder JE. Successful treatment of radiation nephropathy with angiotensin II blockade. Int J Radiat Oncol Biol Phys. 2003;55:190–3. https://doi.org/10.1016/s0360-3016(02)03793-8.

    Article  PubMed  Google Scholar 

  100. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, AIPRD Study Group, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003;139(4):244–52. https://doi.org/10.7326/0003-4819-139-4-200308190-00006.

    Article  CAS  PubMed  Google Scholar 

  101. Cohen EP, Fish BL, Moulder JE. Mitigation of radiation injuries via suppression of the renin-angiotensin system: emphasis on radiation nephropathy. Curr Drug Targets. 2010;11:1423–9. https://doi.org/10.2174/1389450111009011423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Juncos LI, Carrasco Dueñas S, Cornejo JC, Broglia CA, Cejas H. Long-term enalapril and hydrochlorothiazide in radiation nephritis. Nephron. 1993;64(2):249–55. https://doi.org/10.1159/000187322.

    Article  CAS  PubMed  Google Scholar 

  103. Verheij M, Stewart FA, Oussoren Y, Weening JJ, Dewit L. Amelioration of radiation nephropathy by acetylsalicylic acid. Int J Radiat Biol. 1995;67(5):587–96. https://doi.org/10.1080/09553009514550701.

    Article  CAS  PubMed  Google Scholar 

  104. Moulder JE, Fish BL, Cohen EP. Noncontinuous use of angiotensin converting enzyme inhibitors in the treatment of experimental bone marrow transplant nephropathy. Bone Marrow Transplant. 1997;19(7):729–35. https://doi.org/10.1038/sj.bmt.1700732.

    Article  CAS  PubMed  Google Scholar 

  105. Cohen EP, Fish BL, Moulder JE. Successful brief captopril treatment in experimental radiation nephropathy. J Lab Clin Med. 1997;129(5):536–47. https://doi.org/10.1016/S0022-2143(97)90008-1.

    Article  CAS  PubMed  Google Scholar 

  106. Sarnak MJ, Greene T, Wang X, Beck G, Kusek JW, Collins AJ, et al. The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study. Ann Intern Med. 2005;142(5):342–51. https://doi.org/10.7326/0003-4819-142-5-200503010-00009.

    Article  PubMed  Google Scholar 

  107. Sarode R, McFarland JG, Flomenberg N, Casper JT, Cohen EP, Drobyski WR, et al. Therapeutic plasma exchange does not appear to be effective in the management of thrombotic thrombocytopenic purpura/hemolytic uremic syndrome following bone marrow transplantation. Bone Marrow Transplant. 1995;16(2):271–5.

    CAS  PubMed  Google Scholar 

  108. Cohen EP, Piering WF, Kabler-Babbitt C, Moulder JE. End-stage renal disease (ESRD) after bone marrow transplantation: poor survival compar ed to other causes of ESRD. Nephron. 1998;79(4):408–12. https://doi.org/10.1159/000045085.

    Article  CAS  PubMed  Google Scholar 

  109. Federle MP, Rosado-de-Christenson ML, Woodward PJ, et al. Diagnostic and surgical imaging anatomy: chest, abdomen, pelvis. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  110. Moore KA. Clinically oriented anatomy. 3rd ed. Philadelphia: Williams & Wilkins; 1992.

    Google Scholar 

  111. Gray H. Anatomy of the human body. Edited by Warren H. Lewis, 20th edition. Philadelphia: Lea & Febiger, 1918. New York: Barlteby.com; 2000.

    Google Scholar 

  112. Potten C, Booth C. The role of radiation induced and spontaneous apoptosis in the homeostasis of the gastrointestinal epithelium. Comp Biochem Physiol. 1997;3:473.

    Article  Google Scholar 

  113. Richter K, Langberg C, Sung C, et al. Increased transforming growth factor β (TGF-β) immunoreactivity is independently associated with chronic injury in both consequential and primary radiation enteropathy. Int J Radiat Oncol Biol Phys. 1997;19:187.

    Article  Google Scholar 

  114. Landberg C, Hauer-Jensen M, Sung C, et al. Expression of fi brogenic cytokines in rat small intestine after fractionated irradiation. Radiother Oncol. 1994;32:29.

    Article  Google Scholar 

  115. Richter K, Fink L, Hughes B, et al. Is the loss of endothelial thrombomodulin involved in the mechanism of chronicity in late radiation enteropathy? Radiother Oncol. 1997;44:65.

    Article  CAS  PubMed  Google Scholar 

  116. Vozenin-Brotons M-C, Fabien M, Sabourin J-C, et al. Fibrogenic signals in patients with radiation enteritis are associated with increased connective tissue growth factor expression. Int J Radiat Oncol Biol Phys. 2003;56:561.

    Article  CAS  PubMed  Google Scholar 

  117. Coia LR, Myerson RJ, Tepper JE. Late effects of radiation therapy on the gastrointestinal tract. Int J Radiat Oncol Biol Phys. 1995;31:1213–36.

    Article  CAS  PubMed  Google Scholar 

  118. Goldgraber MB, Rubin CE, Palmer WL, et al. The early gastric response to irradiation; a serial biopsy study. Gastroenterology. 1954;27:1–20.

    Article  CAS  PubMed  Google Scholar 

  119. Fajardo L, Berthrong M, Anderson R. Radiation pathology. New York: Oxford University Press; 2001.

    Google Scholar 

  120. Goldstein H, Rogers L, Fletcher G, et al. Radiological manifestations of radiation-induced injury to the normal upper gastrointestinal tract. Radiology. 1975;227:135–40.

    Article  Google Scholar 

  121. Sylven B, Vikterlof K, Schnurer L. Gastric ulceration following cobalt teletherapy Estima-tion of the tolerance dose. Acta Radiol. 1969;8:183.

    CAS  Google Scholar 

  122. Hamilton CR, Horwich A, Bliss JM, et al. Gastrointestinal morbidity of adjuvant radio-therapy in stage I malignant teratoma of the testis. Radiother Oncol. 1987;10:85–90.

    Article  CAS  PubMed  Google Scholar 

  123. Cosset JM, Henry-Amar M, Burgers JM, et al. Late radiation injuries of the gastrointestinal tract in the H2 and H5 EORTC Hodgkin’s disease trials: emphasis on the role of explor-atory laparotomy and fractionation. Radiother Oncol. 1988;13:61–8.

    Article  CAS  PubMed  Google Scholar 

  124. Pearson JG. The present status and future potential of radiotherapy in the management of esophageal cancer. Cancer. 1977;39:882–90.

    Article  CAS  PubMed  Google Scholar 

  125. Gunderson LL, Hoskins RB, Cohen AC, et al. Combined modality treatment of gastric cancer. Int J Radiat Oncol Biol Phys. 1983;9:965–75.

    Article  CAS  PubMed  Google Scholar 

  126. Novak JM, Collins JT, Donowitz M, et al. Effects of radiation on the human gastrointestinal tract. J Clin Gastroenterol. 1979;1:9–39.

    Article  CAS  PubMed  Google Scholar 

  127. Blomgren H. Radiosurgery for tumors in the body: clinical experience using a new method. J Radiosurg. 1998;160:63–74.

    Article  Google Scholar 

  128. Mendez Romero A, Bakri L, Seppenwoolde Y, et al. Inter-andintraobserver variability in daily tumor setup usingcontrast-enhanced CT scans for patient positioning duringstereotactic body radiation therapy for liver metastases. Int J Radiat Oncol. 2013;87(2 Suppl):S318. https://doi.org/10.1016/j.ijrobp.2013.06.836.

    Article  Google Scholar 

  129. Wada S, Tamada K, Tomiyama T, Yamamoto H, Nakazawa K, Sugano K. Endoscopic hemostasis for radiation-induced gastritis using argon plasma coagulation. J Gastroenterol Hepatol. 2003;18:1215–8.

    Article  PubMed  Google Scholar 

  130. Shukuwa K, Kume K, Yamasaki M, Yoshikawa I, Otsuki M. Argon plasma coagulation therapy for a hemorrhagic radiation-induced gastritis in patient with pancreatic cancer. Intern Med. 2007;46:975–7.

    Article  PubMed  Google Scholar 

  131. Taïeb S, Rolachon A, Cenni JC, Nancey S, Bonvoisin S, Descos L, Fournet J, Gérard JP, Flourié B. Effective use of argon plasma coagulation in the treatment of severe radiation proctitis. Dis Colon Rectum. 2001;44:1766–71.

    Article  PubMed  Google Scholar 

  132. Venkatesh KS, Ramanujam P. Endoscopic therapy for radiation proctitis-induced hemorrhage in patients with prostatic carcinoma using argon plasma coagulator application. Surg Endosc. 2002;16:707–10.

    Article  CAS  PubMed  Google Scholar 

  133. Kochhar R, Patel F, Dhar A, Sharma SC, Ayyagari S, Aggarwal R, Goenka MK, Gupta BD, Mehta SK. Radiationinduced proctosigmoiditis. Prospective, randomized, double-blind controlled trial of oral sulfasalazine plus rectal steroids versus rectal sucralfate. Dig Dis Sci. 1991;36:103–7.

    Article  CAS  PubMed  Google Scholar 

  134. Theis VS, Sripadam R, Ramani V, Lal S. Chronic radiation enteritis. Clin Oncol (R Coll Radiol). 2010;22:70–83.

    Article  CAS  Google Scholar 

  135. Kennedy GD, Heise CP. Radiation colitis and proctitis. Clin Colon Rectal Surg. 2007;20:64–72.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Vivek V, Audrey JL, Dandan Z, Abhijeet RB, Quan PL, Chandrakanth A, et al. Dosimetric parameters correlate with duodenal histopathologic damage after stereotactic body radiotherapy for pancreatic cancer: secondary analysis of a prospective clinical trial. Radiother Oncol. 2017;122:464–9. https://doi.org/10.1016/j.radonc.2016.12.030.

    Article  Google Scholar 

  137. Wilson JM, Fokas E, Dutton SJ, et al. ARCII: a phase II trial of the HIV protease inhibitor Nelfinavir in combination with chemoradiation for locally advanced inoperable pancreatic cancer. Radiother Oncol. 2016;119:306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xu KM, Rajagopalan MS, Kim H, Beriwal S. Extended field intensity modulated radiation therapy for gynecologic cancers: is the risk of duodenal toxicity high? Pract Radiat Oncol. 2015;5:e291–7.

    Article  PubMed  Google Scholar 

  139. Verma J, Sulman EP, Jhingran A, et al. Dosimetric predictors of duodenal toxicity after intensity modulated radiation therapy for treatment of the para-aortic nodes in gynecologic cancer. Int J Radiat Oncol Biol Phys. 2014;88:357–62.

    Article  PubMed  Google Scholar 

  140. Poorvu PD, Sadow CA, Townamchai K, Damato AL, Viswanathan AN. Duodenal and other gastrointestinal toxicity in cervical and endometrial cancer treated with extended-field intensity modulated radiation therapy to paraaortic lymph nodes. Int J Radiat Oncol Biol Phys. 2013;85:1262–8.

    Article  PubMed  Google Scholar 

  141. Kelly P, Das P, Pinnix CC, et al. Duodenal toxicity after fractionated chemoradiation for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2013;85:e143–9.

    Article  PubMed  Google Scholar 

  142. Cattaneo GM, Passoni P, Longobardi B, et al. Dosimetric and clinical predictors of toxicity following combined chemotherapy and moderately hypofractionated rotational radiotherapy of locally advanced pancreatic adenocarcinoma. Radiother Oncol. 2013;108:66–71.

    Article  PubMed  Google Scholar 

  143. Mukherjee S, Hurt CN, Bridgewater J, et al. Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): a multicentre, randomised, phase 2 trial. Lancet Oncol. 2013;14:317–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Xia T, Chang D, Wang Y, Li J, Wu W, Zhu F. Dose escalation to target volumes of helical tomotherapy for pancreatic cancer in the phase 1–2 clinical trial. Int J Radiat Oncol Biol Phys. 2013;87:S303.

    Article  Google Scholar 

  145. Kim H, Lim DH, Paik SW, et al. Predictive factors of gastroduodenal toxicity in cirrhotic patients after three-dimensional conformal radiotherapy for hepatocellular carcinoma. Radiother Oncol. 2009;93:302–6.

    Article  PubMed  Google Scholar 

  146. Pan CC, Dawson LA, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiation-induced gastric and duodenal bleeds using the Lyman-Kutcher-Burman model. Int J Radiat Oncol Biol Phys. 2003;57:S217–8.

    Article  Google Scholar 

  147. Goldsmith C, Price P, Cross T, Loughlin S, Cowley I, et al. Dose–volüme histogram analysis of stereotactic body radiotherapy treatment of pancreatic cancer: a focus on duodenal dose constraints. Semin Radiat Oncol. 2016;26:149–56.

    Article  PubMed  Google Scholar 

  148. Ben-Josef E, Schipper M, Francis IR, et al. A phase I/II trial of intensity modulated radiation (IMRT) dose escalation with concurrent fixed-dose rate gemcitabine (FDR-G) in patients with unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2012;84:1166–71.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Jabbour SK, Hashem SA, Bosch W, Kim TK, Finkelstein SE, Anderson BM, et al. Upper abdominal normal organ contouring guidelines and atlas: a Radiation therapy oncology group consensus. Pract Radiat Oncol. 2014;4(2):82–9. https://doi.org/10.1016/j.prro.2013.06.004.

    Article  PubMed  Google Scholar 

  150. Gay HA, Barthold HJ, O’Meara E, Bosch WR, El Naqa I, Al-Lozi R, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group Consensus Panel Atlas. Int J Radiat Oncol Biol Phys. 2012;83(3):e353–62. https://doi.org/10.1016/j.ijrobp.2012.01.023.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Sanguineti G, Little M, Endres EJ, Sormani MP, Parker BC. Comparison of three strategies to delineate the bowel for whole pelvis IMRT of prostate cancer. Radiother Oncol. 2008;88(1):95–101. https://doi.org/10.1016/j.radonc.2008.01.015.

    Article  PubMed  Google Scholar 

  152. Citrin DE, Mitchell JB. Mechanisms of normal tissue injury from irradiation. Semin Radiat Oncol. 2017;27(4):316–24. https://doi.org/10.1016/j.semradonc.2017.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Denham JW, Hauer-Jensen M. The radiotherapeutic injury--a complex ‘wound’. Radiother Oncol. 2002;63(2):129–45. https://doi.org/10.1016/s0167-8140(02)00060-9.

    Article  PubMed  Google Scholar 

  154. Hauer-Jensen M, Wang J, Denham JW. Bowel injury: current and evolving management strategies. Semin Radiat Oncol. 2003;13(3):357–71. https://doi.org/10.1016/s1053-4296(03)00032-8.

    Article  PubMed  Google Scholar 

  155. Rotolo JA, Maj JG, Feldman R, Ren D, Haimovitz-Friedman A, Cordon-Cardo C, et al. Bax and Bak do not exhibit functional redundancy in mediating radiation-induced endothelial apoptosis in the intestinal mucosa. Int J Radiat Oncol Biol Phys. 2008;70(3):804–15. https://doi.org/10.1016/j.ijrobp.2007.11.043.

    Article  CAS  PubMed  Google Scholar 

  156. Zimmerer T, Böcker U, Wenz F, Singer MV. Medical prevention and treatment of acute and chronic radiation induced enteritis: is there any proven therapy? A short review. Z Gastroenterol. 2008;46(5):441–8. https://doi.org/10.1055/s-2008-1027150.

    Article  CAS  PubMed  Google Scholar 

  157. Nicholas S, Chen L, Choflet A, Fader A, Guss Z, Hazell S, et al. Pelvic radiation and normal tissue toxicity. Semin Radiat Oncol. 2017;27(4):358–69. https://doi.org/10.1016/j.semradonc.2017.04.010.

    Article  PubMed  Google Scholar 

  158. Carr KE. Effects of radiation damage on intestinal morphology. Int Rev Cytol. 2001;208:1–119. https://doi.org/10.1016/s0074-7696(01)08002-0.

    Article  CAS  PubMed  Google Scholar 

  159. Hagemann RF. Intestinal cell proliferation during fractionated abdominal irradiation. Br J Radiol. 1976;49(577):56–61. https://doi.org/10.1259/0007-1285-49-577-56.

    Article  CAS  PubMed  Google Scholar 

  160. Maj JG, Paris F, Haimovitz-Friedman A, Venkatraman E, Kolesnick R, Fuks Z. Microvascular function regulates intestinal crypt response to radiation. Cancer Res. 2003;63(15):4338–41.

    CAS  PubMed  Google Scholar 

  161. Wedlake L, Thomas K, McGough C, Andreyev HJ. Small bowel bacterial overgrowth and lactose intolerance during radical pelvic radiotherapy: an observational study. Eur J Cancer. 2008;44(15):2212–7. https://doi.org/10.1016/j.ejca.2008.07.018.

    Article  CAS  PubMed  Google Scholar 

  162. Andreyev J. Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. Lancet Oncol. 2007;8(11):1007–17. https://doi.org/10.1016/S1470-2045(07)70341-8.

    Article  PubMed  Google Scholar 

  163. Berthrong M, Fajardo LF. Radiation injury in surgical pathology. Part II. Alimentary tract. Am J Surg Pathol. 1981;5(2):153–78. https://doi.org/10.1097/00000478-198103000-00006.

    Article  CAS  PubMed  Google Scholar 

  164. Otterson MF, Sarna SK, Moulder JE. Effects of fractionated doses of ionizing radiation on small intestinal motor activity. Gastroenterology. 1988;95(5):1249–57. https://doi.org/10.1016/0016-5085(88)90358-7.

    Article  CAS  PubMed  Google Scholar 

  165. Husebye E, Skar V, Høverstad T, Iversen T, Melby K. Abnormal intestinal motor patterns explain enteric colonization with gram-negative bacilli in late radiation enteropathy. Gastroenterology. 1995;109(4):1078–89. https://doi.org/10.1016/0016-5085(95)90565-0.

    Article  CAS  PubMed  Google Scholar 

  166. Martin M, Lefaix JL, Delanian S. TGF-1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 2000;47:277–90. https://doi.org/10.1016/s0360-3016(00)00435-1.

    Article  CAS  PubMed  Google Scholar 

  167. Nguyen NP, Antoine JE, Dutta S, Karlsson U, Sallah S. Current concepts in radiation enteritis and implications for future clinical trials. Cancer. 2002;95(5):1151–63. https://doi.org/10.1002/cncr.10766.

    Article  PubMed  Google Scholar 

  168. Donner CS. Pathophysiology and therapy of chronic radiation-induced injury to the colon. Dig Dis. 1998;16(4):253–61. https://doi.org/10.1159/000016873.

    Article  CAS  PubMed  Google Scholar 

  169. Haboubi NY, Schofield PF, Rowland PL. The light and electron microscopic features of early and late phase radiation-induced proctitis. Am J Gastroenterol. 1988;83:1140–4.

    CAS  PubMed  Google Scholar 

  170. Regimbeau JM, Panis Y, Gouzi JL. Fagniez PL; operative and long term results after surgery for chronic radiation enteritis. Am J Surg. 2001;182(3):237–42. https://doi.org/10.1016/s0002-9610(01)00705-x.

    Article  CAS  PubMed  Google Scholar 

  171. Hamad A, Fragkos CK, Forbes A. A systematic review and meta-analysis of probiotics for the management of radiation induced bowel disease. Clin Nutr. 2013;32:353–60. https://doi.org/10.1016/j.clnu.2013.02.004.

    Article  PubMed  Google Scholar 

  172. Jadon R, Higgins E, Hanna L, Evans M, Coles B, Staffurth J. A systematic review of dose-volume predictors and constraints for late bowel toxicity following pelvic radiotherapy. Radiat Oncol. 2019;14(1):57. https://doi.org/10.1186/s13014-019-1262-8.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 2001;345(10):725–30. https://doi.org/10.1056/NEJMoa010187.

    Article  CAS  PubMed  Google Scholar 

  174. Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355(11):1114–23. https://doi.org/10.1056/NEJMoa060829.

    Article  CAS  PubMed  Google Scholar 

  175. Hauer-Jensen M. Late radiation injury of the small intestine: clinical, pathophysiologic, and radiobiologic aspects. A review. Acta Oncol. 1990;29(4):401–15. https://doi.org/10.3109/02841869009090022.

    Article  CAS  PubMed  Google Scholar 

  176. Baglan KL, Frazier RC, Yan D, Huang RR, Martinez AA, Robertson JM. The dose-volume relationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2002;52(1):176–83. https://doi.org/10.1016/s0360-3016(01)01820-x.

    Article  PubMed  Google Scholar 

  177. Tho LM, Glegg M, Paterson J, Yap C, MacLeod A, McCabe M, et al. Acute small bowel toxicity and preoperative chemoradiotherapy for rectal cancer: investigating dose-volume relationships and role for inverse planning. Int J Radiat Oncol Biol Phys. 2006;66(2):505–13. https://doi.org/10.1016/j.ijrobp.2006.05.005.

    Article  PubMed  Google Scholar 

  178. Huang EY, Sung CC, Ko SF, Wang CJ, Yang KD. The different volume effects of small-bowel toxicity during pelvic irradiation between gynecologic patients with and without abdominal surgery: a prospective study with computed tomography-based dosimetry. Int J Radiat Oncol Biol Phys. 2007;69(3):732–9. https://doi.org/10.1016/j.ijrobp.2007.03.060.

    Article  PubMed  Google Scholar 

  179. Roeske JC, Bonta D, Mell LK, Lujan AE, Mundt AJ. A dosimetric analysis of acute gastrointestinal toxicity in women receiving intensity-modulated whole-pelvic radiation therapy. Radiother Oncol. 2003;69(2):201–7. https://doi.org/10.1016/j.radonc.2003.05.001.

    Article  PubMed  Google Scholar 

  180. Roeske JC, Lujan A, Rotmensch J, Waggoner SE, Yamada D, Mundt AJ. Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2000;48(5):1613–21. https://doi.org/10.1016/s0360-3016(00)00771-9.

    Article  CAS  PubMed  Google Scholar 

  181. Robertson JM, Lockman D, Yan D, Wallace M. The dose-volume relationship of small bowel irradiation and acute grade 3 diarrhea during chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2008;70(2):413–8. https://doi.org/10.1016/j.ijrobp.2007.06.066.

    Article  CAS  PubMed  Google Scholar 

  182. Lee TF, Huang EY. The different dose-volume effects of normal tissue complication probability using LASSO for acute small-bowel toxicity during radiotherapy in gynecological patients with or without prior abdominal surgery. Biomed Res Int. 2014;2014:143020. https://doi.org/10.1155/2014/143020.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kavanagh BD, Pan CC, Dawson LA, Das SK, Li XA, Ten Haken RK, et al. Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S101–7. https://doi.org/10.1016/j.ijrobp.2009.05.071.

    Article  PubMed  Google Scholar 

  184. Martin J, Fitzpatrick K, Horan G, McCloy R, Buckney S, O’Neill L, et al. Treatment with a belly-board device significantly reduces the volume of small bowel irradiated and results in low acute toxicity in adjuvant radiotherapy for gynecologic cancer: results of a prospective study. Radiother Oncol. 2005;74(3):267–74. https://doi.org/10.1016/j.radonc.2004.11.010.

    Article  PubMed  Google Scholar 

  185. Kölbl O, Richter S, Flentje M. Influence of treatment technique on dose-volume histogram and normal tissue complication probability for small bowel and bladder. A prospective study using a 3-D planning system and a radiobiological model in patients receiving postoperative pelvic irradiation. Strahlenther Onkol. 2000;176(3):105–11. https://doi.org/10.1007/pl00002334.

    Article  PubMed  Google Scholar 

  186. Wee CW, Kang HC, Wu HG, Chie EK, Choi N, Park JM, et al. Intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy in rectal cancer treated with neoadjuvant concurrent chemoradiation: a meta-analysis and pooled-analysis of acute toxicity. Jpn J Clin Oncol. 2018;48(5):458–66. https://doi.org/10.1093/jjco/hyy029.

    Article  PubMed  Google Scholar 

  187. Ng SY, Colborn KL, Cambridge L, Hajj C, Yang TJ, Wu AJ, et al. Acute toxicity with intensity modulated radiotherapy versus 3-dimensional conformal radiotherapy during preoperative chemoradiation for locally advanced rectal cancer. Radiother Oncol. 2016;121(2):252–7. https://doi.org/10.1016/j.radonc.2016.09.010.

    Article  PubMed  Google Scholar 

  188. Hong TS, Moughan J, Garofalo MC, Bendell J, Berger AC, Oldenburg NB, et al. NRG oncology radiation therapy oncology group 0822: a phase 2 study of preoperative chemoradiation therapy using intensity modulated radiation therapy in combination with capecitabine and oxaliplatin for patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2015;93(1):29–36. https://doi.org/10.1016/j.ijrobp.2015.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Banerjee R, Chakraborty S, Nygren I, Sinha R. Small bowel dose parameters predicting grade ≥ 3 acute toxicity in rectal cancer patients treated with neoadjuvant chemoradiation: an independent validation study comparing peritoneal space versus small bowel loop contouring techniques. Int J Radiat Oncol Biol Phys. 2013;85(5):1225–31. https://doi.org/10.1016/j.ijrobp.2012.09.036.

    Article  PubMed  Google Scholar 

  190. Jhingran A, Winter K, Portelance L, Miller B, Salehpour M, Gaur R, et al. A phase II study of intensity modulated radiation therapy to the pelvis for postoperative patients with endometrial carcinoma: radiation therapy oncology group trial 0418. Int J Radiat Oncol Biol Phys. 2012;84(1):e23–8. https://doi.org/10.1016/j.ijrobp.2012.02.044.

    Article  PubMed  Google Scholar 

  191. Klopp AH, Yeung AR, Deshmukh S, Gil KM, Wenzel L, Westin SN, et al. Patient-reported toxicity during pelvic intensity-modulated radiation therapy: NRG oncology-RTOG 1203. J Clin Oncol. 2018;36(24):2538–44. https://doi.org/10.1200/JCO.2017.77.4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Stanic S, Mayadev JS. Tolerance of the small bowel to therapeutic irradiation: a focus on late toxicity in patients receiving para-aortic nodal irradiation for gynecologic malignancies. Int J Gynecol Cancer. 2013;23(4):592–7. https://doi.org/10.1097/IGC.0b013e318286aa68.

    Article  PubMed  Google Scholar 

  193. Beriwal S, Gan GN, Heron DE, Selvaraj RN, Kim H, Lalonde R, et al. Early clinical outcome with concurrent chemotherapy and extended-field, intensity-modulated radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2007;68(1):166–71. https://doi.org/10.1016/j.ijrobp.2006.12.023.

    Article  PubMed  Google Scholar 

  194. Gallagher MJ, Brereton HD, Rostock RA, Zero JM, Zekoski DA, Poyss LF, et al. A prospective study of treatment techniques to minimize the volume of pelvic small bowel with reduction of acute and late effects associated with pelvic irradiation. Int J Radiat Oncol Biol Phys. 1986;12(9):1565–73. https://doi.org/10.1016/0360-3016(86)90279-8.

    Article  CAS  PubMed  Google Scholar 

  195. Letschert JG, Lebesque JV, Aleman BM, Bosset JF, Horiot JC, Bartelink H, et al. The volume effect in radiation-related late small bowel complications: results of a clinical study of the EORTC radiotherapy cooperative group in patients treated for rectal carcinoma. Radiother Oncol. 1994;32(2):116–23. https://doi.org/10.1016/0167-8140(94)90097-3.

    Article  CAS  PubMed  Google Scholar 

  196. Chopra S, Dora T, Chinnachamy AN, Thomas B, Kannan S, Engineer R, et al. Predictors of grade 3 or higher late bowel toxicity in patients undergoing pelvic radiation for cervical cancer: results from a prospective study. Int J Radiat Oncol Biol Phys. 2014;88(3):630–5. https://doi.org/10.1016/j.ijrobp.2013.11.214.

    Article  PubMed  Google Scholar 

  197. Lee J, Yoon WS, Koom WS, Rim CH. Efficacy of stereotactic body radiotherapy for unresectable or recurrent cholangiocarcinoma: a meta-analysis and systematic review. Strahlenther Onkol. 2019;195(2):93–102. https://doi.org/10.1007/s00066-018-1367-2.

    Article  PubMed  Google Scholar 

  198. Buwenge M, Macchia G, Arcelli A, Frakulli R, Fuccio L, Guerri S, et al. Stereotactic radiotherapy of pancreatic cancer: a systematic review on pain relief. J Pain Res. 2018;11:2169–78. https://doi.org/10.2147/JPR.S167994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Taniguchi CM, Murphy JD, Eclov N, Atwood TF, Kielar KN, Christman-Skieller C, et al. Dosimetric analysis of organs at risk during expiratory gating in stereotactic body radiation therapy for pancreatic cancer. Int J Radiat Oncol Biol Phys. 2013;85(4):1090–5. https://doi.org/10.1016/j.ijrobp.2012.07.2366.

    Article  PubMed  Google Scholar 

  200. Barney BM, Olivier KR, Macdonald OK, Fong de Los Santos LE, Miller RC, Haddock MG. Clinical outcomes and dosimetric considerations using stereotactic body radiotherapy for abdominopelvic tumors. Am J Clin Oncol. 2012;35(6):537–42. https://doi.org/10.1097/COC.0b013e31821f876a.

    Article  PubMed  Google Scholar 

  201. Hoyer M, Roed H, Traberg Hansen A, Ohlhuis L, Petersen J, Nellemann H, et al. Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol. 2006;45(7):823–30. https://doi.org/10.1080/02841860600904854.

    Article  PubMed  Google Scholar 

  202. Kopek N, Holt MI, Hansen AT, Høyer M. Stereotactic body radiotherapy for unresectable cholangiocarcinoma. Radiother Oncol. 2010;94(1):47–52. https://doi.org/10.1016/j.radonc.2009.11.004.

    Article  PubMed  Google Scholar 

  203. Koong AC, Le QT, Ho A, Fong B, Fisher G, Cho C, et al. Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2004;58(4):1017–21. https://doi.org/10.1016/j.ijrobp.2003.11.004.

    Article  PubMed  Google Scholar 

  204. Bae SH, Kim MS, Cho CK, Kang JK, Lee SY, Lee KN, et al. Predictor of severe gastroduodenal toxicity after stereotactic body radiotherapy for abdominopelvic malignancies. Int J Radiat Oncol Biol Phys. 2012;84(4):e469–74. https://doi.org/10.1016/j.ijrobp.2012.06.005.

    Article  PubMed  Google Scholar 

  205. Goldsmith C, Price P, Cross T, Loughlin S, Cowley I, Plowman N. Dose-volume histogram analysis of stereotactic body radiotherapy treatment of pancreatic cancer: a focus on duodenal dose constraints. Semin Radiat Oncol. 2016;26(2):149–56. https://doi.org/10.1016/j.semradonc.2015.12.002.

    Article  PubMed  Google Scholar 

  206. Frelinghuysen M, Schillemans W, Hol L, Verhoef C, Hoogeman M, Nuyttens JJ. Acute toxicity of the bowel after stereotactic robotic radiotherapy for abdominopelvic oligometastases. Acta Oncol. 2018;57(4):480–4. https://doi.org/10.1080/0284186X.2017.1378432.

    Article  PubMed  Google Scholar 

  207. LaCouture TA, Xue J, Subedi G, Xu Q, Lee JT, Kubicek G, et al. Small bowel dose tolerance for stereotactic body radiation therapy. Semin Radiat Oncol. 2016;26(2):157–64. https://doi.org/10.1016/j.semradonc.2015.11.009.

    Article  PubMed  Google Scholar 

  208. Yeoh E, Horowitz M, Russo A, Muecke T, Robb T, Maddox A, et al. Effect of pelvic irradiation on gastrointestinal function: a prospective longitudinal study. Am J Med. 1993;95(4):397–406. https://doi.org/10.1016/0002-9343(93)90309-d.

    Article  CAS  PubMed  Google Scholar 

  209. Stacey R, Green JT. Radiation-induced small bowel disease: latest developments and clinical guidance. Ther Adv Chronic Dis. 2014;5(1):15–29. https://doi.org/10.1177/2040622313510730.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Ruskoné A, René E, Chayvialle JA, Bonin N, Pignal F, Kremer M, et al. Effect of somatostatin on diarrhea and on small intestinal water and electrolyte transport in a patient with pancreatic cholera. Dig Dis Sci. 1982;27(5):459–66. https://doi.org/10.1007/bf01295657.

    Article  PubMed  Google Scholar 

  211. Szilagyi A, Shrier I. Systematic review: the use of somatostatin or octreotide in refractory diarrhoea. Aliment Pharmacol Ther. 2001;15(12):1889–97. https://doi.org/10.1046/j.1365-2036.2001.01114.x.

    Article  CAS  PubMed  Google Scholar 

  212. Sukhotnik I, Khateeb K, Krausz MM, Sabo E, Siplovich L, Coran AG, et al. Sandostatin impairs postresection intestinal adaptation in a rat model of short bowel syndrome. Dig Dis Sci. 2002;47(9):2095–102. https://doi.org/10.1023/a:1019641416671.

    Article  CAS  PubMed  Google Scholar 

  213. Yavuz MN, Yavuz AA, Aydin F, Can G, Kavgaci H. The efficacy of octreotide in the therapy of acute radiation-induced diarrhea: a randomized controlled study. Int J Radiat Oncol Biol Phys. 2002;54(1):195–202. https://doi.org/10.1016/s0360-3016(02)02870-5.

    Article  CAS  PubMed  Google Scholar 

  214. Martenson JA, Halyard MY, Sloan JA, Proulx GM, Miller RC, Deming RL, et al. Phase III, double-blind study of depot octreotide versus placebo in the prevention of acute diarrhea in patients receiving pelvic radiation therapy: results of north central Cancer treatment group N00CA. J Clin Oncol. 2008;26(32):5248–53. https://doi.org/10.1200/JCO.2008.17.1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Sun JX, Yang N. Role of octreotide in post chemotherapy and/or radiotherapy diarrhea: prophylaxis or therapy? Asia Pac J Clin Oncol. 2014;10(2):e108–13. https://doi.org/10.1111/ajco.12055.

    Article  PubMed  Google Scholar 

  216. Cherny NI. Evaluation and management of treatment-related diarrhea in patients with advanced cancer: a review. J Pain Symptom Manag. 2008;36(4):413–23. https://doi.org/10.1016/j.jpainsymman.2007.10.007.

    Article  CAS  Google Scholar 

  217. Mennie AT, Dalley VM, Dinneen LC, Collier HO. Treatment of radiation-induced gastrointestinal distress with acetylsalicylate. Lancet. 1975;2(7942):942–3. https://doi.org/10.1016/s0140-6736(75)90358-x.

    Article  CAS  PubMed  Google Scholar 

  218. Stryker JA, Demers LM, Mortel R. Prophylactic ibuprofen administration during pelvic irradiation. Int J Radiat Oncol Biol Phys. 1979;5(11–12):2049–52. https://doi.org/10.1016/0360-3016(79)90958-1.

    Article  CAS  PubMed  Google Scholar 

  219. Gibson RJ, Keefe DM, Lalla RV, Bateman E, Blijlevens N, Fijlstra M, et al. Systematic review of agents for the management of gastrointestinal mucositis in cancer patients. Support Care Cancer. 2013;21(1):313–26. https://doi.org/10.1007/s00520-012-1644-z.

    Article  PubMed  Google Scholar 

  220. Kiliç D, Egehan I, Ozenirler S, Dursun A. Double-blinded, randomized, placebo-controlled study to evaluate the effectiveness of sulphasalazine in preventing acute gastrointestinal complications due to radiotherapy. Radiother Oncol. 2000;57(2):125–9. https://doi.org/10.1016/s0167-8140(00)00254-1.

    Article  PubMed  Google Scholar 

  221. Martenson JA Jr, Hyland G, Moertel CG, Mailliard JA, O’Fallon JR, Collins RT, et al. Olsalazine is contraindicated during pelvic radiation therapy: results of a double-blind, randomized clinical trial. Int J Radiat Oncol Biol Phys. 1996;35(2):299–303. https://doi.org/10.1016/0360-3016(96)00016-8.

    Article  CAS  PubMed  Google Scholar 

  222. Resbeut M, Marteau P, Cowen D, Richaud P, Bourdin S, Dubois JB, et al. A randomized double blind placebo controlled multicenter study of mesalazine for the prevention of acute radiation enteritis. Radiother Oncol. 1997;44(1):59–63. https://doi.org/10.1016/s0167-8140(97)00064-9.

    Article  CAS  PubMed  Google Scholar 

  223. Benson AB, Ajani JA, Catalano RB, Engelking C, Kornblau SM, Martenson JA Jr, et al. Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J Clin Oncol. 2004;22(14):2918–26. https://doi.org/10.1200/JCO.2004.04.132.

    Article  CAS  PubMed  Google Scholar 

  224. van de Wetering FT, Verleye L, Andreyev HJ, Maher J, Vlayen J, Pieters BR, et al. Non-surgical interventions for late rectal problems (proctopathy) of radiotherapy in people who have received radiotherapy to the pelvis. Cochrane Database Syst Rev. 2016;4:CD003455. https://doi.org/10.1002/14651858.

    Article  CAS  PubMed  Google Scholar 

  225. Valls A, Pestchen I, Prats C, Pera J, Aragón G, Vidarte M, et al. Multicenter double-blind clinical trial comparing sucralfate vs placebo in the prevention of diarrhea secondary to pelvic irradiation. Med Clin (Barc). 1999;113(18):681–4.

    CAS  Google Scholar 

  226. Kneebone A, Mameghan H, Bolin T, Berry M, Turner S, Kearsley J, et al. The effect of oral sucralfate on the acute proctitis associated with prostate radiotherapy: a double-blind, randomized trial. Int J Radiat Oncol Biol Phys. 2001;51(3):628–35. https://doi.org/10.1016/s0360-3016(01)01660-1.

    Article  CAS  PubMed  Google Scholar 

  227. Martenson JA, Bollinger JW, Sloan JA, Novotny PJ, Urias RE, Michalak JC, et al. Sucralfate in the prevention of treatment-induced diarrhea in patients receiving pelvic radiation therapy: a north central cancer treatment group phase III double-blind placebo-controlled trial. J Clin Oncol. 2000;18(6):1239–45. https://doi.org/10.1200/JCO.2000.18.6.1239.

    Article  CAS  PubMed  Google Scholar 

  228. Andreyev HJ, Vlavianos P, Blake P, Dearnaley D, Norman AR, Tait D. Gastrointestinal symptoms after pelvic radiotherapy: role for the gastroenterologist? Int J Radiat Oncol Biol Phys. 2005;62(5):1464–71. https://doi.org/10.1016/j.ijrobp.2004.12.087.

    Article  PubMed  Google Scholar 

  229. Heusinkveld RS, Manning MR, Aristizabal SA. Control of radiation-induced diarrhea with cholestyramine. Int J Radiat Oncol Biol Phys. 1978;4(7–8):687–90. https://doi.org/10.1016/0360-3016(78)90194-3.

    Article  CAS  PubMed  Google Scholar 

  230. Scolapio JS, Ukleja A, Burnes JU, Kelly DG. Outcome of patients with radiation enteritis treated with home parenteral nutrition. Am J Gastroenterol. 2002;97(3):662–6. https://doi.org/10.1111/j.1572-0241.2002.05546.x.

    Article  PubMed  Google Scholar 

  231. Loiudice TA, Lang JA. Treatment of radiation enteritis: a comparison study. Am J Gastroenterol. 1983;78(8):481–7.

    CAS  PubMed  Google Scholar 

  232. Onodera H, Nagayama S, Mori A, Fujimoto A, Tachibana T, Yonenaga Y. Reappraisal of surgical treatment for radiation enteritis. World J Surg. 2005;29(4):459–63. https://doi.org/10.1007/s00268-004-7699-3.

    Article  PubMed  Google Scholar 

  233. Dietz DW, Remzi FH, Fazio VW. Strictureplasty for obstructing small-bowel lesions in diffuse radiation enteritis--successful outcome in five patients. Dis Colon Rectum. 2001;44(12):1772–7. https://doi.org/10.1007/bf02234454.

    Article  CAS  PubMed  Google Scholar 

  234. Hovdenak N, Fajardo LF, Hauer-Jensen M. Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48(4):1111–7. https://doi.org/10.1016/s0360-3016(00)00744-6.

    Article  CAS  PubMed  Google Scholar 

  235. Hauer-Jensen M, Wang J, Boerma M, Fu Q, Denham JW. Radiation damage to the gastrointestinal tract: mechanisms, diagnosis, and management. Curr Opin Support Palliat Care. 2007;1(1):23–9. https://doi.org/10.1097/SPC.0b013e3281108014.

    Article  PubMed  Google Scholar 

  236. Trott KR, Tamou S, Sassy T, Kiszel Z. The effect of irradiated volume on the chronic radiation damage of the rat large bowel. Strahlenther Onkol. 1995;171(6):326–31.

    CAS  PubMed  Google Scholar 

  237. Frykholm GJ, Isacsson U, Nygård K, Montelius A, Jung B, Påhlman L, et al. Preoperative radiotherapy in rectal carcinoma--aspects of acute adverse effects and radiation technique. Int J Radiat Oncol Biol Phys. 1996;35(5):1039–48. https://doi.org/10.1016/0360-3016(96)00229-5.

    Article  CAS  PubMed  Google Scholar 

  238. Isohashi F, Yoshioka Y, Mabuchi S, Konishi K, Koizumi M, Takahashi Y, et al. Dose-volume histogram predictors of chronic gastrointestinal complications after radical hysterectomy and postoperative concurrent nedaplatin-based chemoradiation therapy for early-stage cervical cancer. Int J Radiat Oncol Biol Phys. 2013;85(3):728–34. https://doi.org/10.1016/j.ijrobp.2012.05.021.

    Article  PubMed  Google Scholar 

  239. Fonteyne V, De Neve W, Villeirs G, De Wagter C, De Meerleer G. Late radiotherapy-induced lower intestinal toxicity (RILIT) of intensity-modulated radiotherapy for prostate cancer: the need for adapting toxicity scales and the appearance of the sigmoid colon as co-responsible organ for lower intestinal toxicity. Radiother Oncol. 2007;84(2):156–63. https://doi.org/10.1016/j.radonc.2007.06.013.

    Article  PubMed  Google Scholar 

  240. Mouttet-Audouard R, Lacornerie T, Tresch E, Kramar A, Le Tinier F, Reynaert N, et al. What is the normal tissues morbidity following helical intensity modulated radiation treatment for cervical cancer? Radiother Oncol. 2015;115(3):386–91. https://doi.org/10.1016/j.radonc.2015.02.010.

    Article  PubMed  Google Scholar 

  241. Lind H, Alevronta E, Steineck G, Waldenström AC, Nyberg T, Olsson C, et al. Defecation into clothing without forewarning and mean radiation dose to bowel and anal-sphincter among gynecological cancer survivors. Acta Oncol. 2016;55(11):1285–93. https://doi.org/10.1080/0284186X.2016.1176247.

    Article  PubMed  Google Scholar 

  242. Sarin A, Safar B. Management of radiation proctitis. Gastroenterol Clin N Am. 2013;42(4):913–25. https://doi.org/10.1016/j.gtc.2013.08.004.

    Article  Google Scholar 

  243. Qadeer MA, Vargo JJ. Approaches to the prevention and management of radiation colitis. Curr Gastroenterol Rep. 2008;10(5):507–13. https://doi.org/10.1007/s11894-008-0093-9.

    Article  PubMed  Google Scholar 

  244. Paquette IM, Vogel JD, Abbas MA, Feingold DL, Steele SR, Clinical Practice Guidelines Committee of The American Society of Colon and Rectal Surgeons. The American society of colon and rectal surgeons clinical practice guidelines for the treatment of chronic radiation proctitis. Dis Colon Rectum. 2018;61(10):1135–40. https://doi.org/10.1097/DCR.0000000000001209.

    Article  PubMed  Google Scholar 

  245. Haddad GK, Grodsinsky C, Allen H. The spectrum of radiation enteritis. Surgical considerations. Dis Colon Rectum. 1983;26(9):590–4. https://doi.org/10.1007/bf02552969.

    Article  CAS  PubMed  Google Scholar 

  246. Tabibian N, Umbreen A, Swehli E, Boyd A, Tabibian JH. Radiation therapy: managing GI tract complications. J Fam Pract. 2017;66(8):E1–7.

    PubMed  Google Scholar 

  247. Silvain C, Besson I, Ingrand P, Beau P, Fort E, Matuchansky C, et al. Long-term outcome of severe radiation enteritis treated by total parenteral nutrition. Dig Dis Sci. 1992;37:1065–71. https://doi.org/10.1007/bf01300288.

    Article  CAS  PubMed  Google Scholar 

  248. McGough C, Baldwin C, Frost G, Andreyev HJ. Role of nutritional intervention in patients treated with radiotherapy for pelvic malignancy. Br J Cancer. 2004;90:2278–87. https://doi.org/10.1038/sj.bjc.6601868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Yeoh E. Radiotherapy: long-term effects on gastrointestinal function. Curr Opin Support Palliat Care. 2008;2(1):40–4. https://doi.org/10.1097/SPC.0b013e3282f4451f.

    Article  PubMed  Google Scholar 

  250. Kountouras J, Zavos C. Recent advances in the management of radiation colitis. World J Gastroenterol. 2008;14(48):7289–301. https://doi.org/10.3748/wjg.14.7289.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We specially thank Volkan Semiz, MD from Dokuz Eylul University Medical School Department of Radiation Oncology for data processing of computerized tomography scans.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alicikus, Z.A., Aydin, B. (2020). Toxicity Management for Upper Abdomen Tumors in Radiation Oncology. In: Ozyigit, G., Selek, U. (eds) Prevention and Management of Acute and Late Toxicities in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-37798-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37798-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37797-7

  • Online ISBN: 978-3-030-37798-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics