Skip to main content

Toxicity Management for Thorax Tumors in Radiation Oncology

  • Chapter
  • First Online:
Book cover Prevention and Management of Acute and Late Toxicities in Radiation Oncology

Abstract

Thorax is site of tumors arising from structures residing in it (lung cancer, esophageal cancer, lymphoma) and metastasis from many malignancies. Lung cancer, being one of the most frequent and deadliest malignancies worldwide, requires high doses of radiotherapy when given in conventional fractionation or hypofraction in the definitive-curative setting, thus leading to sometimes severe, debilitating, and fatal toxicities. Similarly, radiotherapy for breast and esophageal cancers, lymphoma, thymoma, or any other cancer located in thorax can have similar detrimental effect on thoracic structures, if dose constraints are violated. Stereotactic ablative body radiotherapy (SABR) has gained popularity due to its effectiveness in both primary early stage lung cancer and metastatic disease. Due to its novelty, new data regarding risk factors and constraints, previously unnoticed toxicity has been encountered in this setting. In this chapter we aim to define patient, treatment, and dosimetric related risk factors leading to toxicities in thoracic organs at risk (OAR) such as lungs, heart, esophagus, chest wall, major airways and vessels, as well as review the body of knowledge regarding mitigation of acute and chronic radiation therapy toxicities in these organs. We will focus on non-stochastic effects and prevention of stochastic events such as secondary cancers are not the scope of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaudhry R, Bordoni B. Anatomy, thorax, lungs. Treasure Island (FL): StatPearls; 2019.

    Google Scholar 

  2. Chang JY, Bezjak A, Mornex F, Committee IART. Stereotactic ablative radiotherapy for centrally located early stage non-small-cell lung cancer: what we have learned. J Thorac Oncol. 2015;10(4):577–85.

    Article  CAS  PubMed  Google Scholar 

  3. Kong FM, Ritter T, Quint DJ, Senan S, Gaspar LE, Komaki RU, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys. 2011;81(5):1442–57.

    Article  PubMed  Google Scholar 

  4. Uchida Y, Tsugawa T, Tanaka-Mizuno S, Noma K, Aoki K, Shigemori W, et al. Exclusion of emphysematous lung from dose-volume estimates of risk improves prediction of radiation pneumonitis. Radiat Oncol. 2017;12(1):160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang W, Xu Y, Schipper M, Matuszak MM, Ritter T, Cao Y, et al. Effect of normal lung definition on lung dosimetry and lung toxicity prediction in radiation therapy treatment planning. Int J Radiat Oncol Biol Phys. 2013;86(5):956–63.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Meng Y, Yang H, Wang W, Tang X, Jiang C, Shen Y, et al. Excluding PTV from lung volume may better predict radiation pneumonitis for intensity modulated radiation therapy in lung cancer patients. Radiat Oncol. 2019;14(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Evans WALT. Intrathoracic changes induced by heavy radiation. Am J Roentgenol. 1925;13:203–20.

    Google Scholar 

  8. Graves PR, Siddiqui F, Anscher MS, Movsas B. Radiation pulmonary toxicity: from mechanisms to management. Semin Radiat Oncol. 2010;20(3):201–7.

    Article  PubMed  Google Scholar 

  9. Choi YW, Munden RF, Erasmus JJ, Park KJ, Chung WK, Jeon SC, et al. Effects of radiation therapy on the lung: radiologic appearances and differential diagnosis. Radiographics. 2004;24(4):985–97; discussion 98

    Article  PubMed  Google Scholar 

  10. Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M. Radiation-induced lung injury: assessment and management. Chest. 2019;156(1):150–62.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tsoutsou PG, Koukourakis MI. Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys. 2006;66(5):1281–93.

    Article  PubMed  Google Scholar 

  12. Huang Y, Zhang W, Yu F, Gao F. The cellular and molecular mechanism of radiation-induced lung injury. Med Sci Monit. 2017;23:3446–50.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85(2):444–50.

    Article  PubMed  Google Scholar 

  14. Onishi H, Yamashita H, Shioyama Y, Matsumoto Y, Takayama K, Matsuo Y, et al. Stereotactic body radiation therapy for patients with pulmonary interstitial change: high incidence of fatal radiation pneumonitis in a retrospective multi-institutional study. Cancers (Basel). 2018;10(8)

    Google Scholar 

  15. Chen H, Senan S, Nossent EJ, Boldt RG, Warner A, Palma DA, et al. Treatment-related toxicity in patients with early-stage non-small cell lung cancer and coexisting interstitial lung disease: a systematic review. Int J Radiat Oncol Biol Phys. 2017;98(3):622–31.

    Article  PubMed  Google Scholar 

  16. Yamaguchi S, Ohguri T, Matsuki Y, Yahara K, Oki H, Imada H, et al. Radiotherapy for thoracic tumors: association between subclinical interstitial lung disease and fatal radiation pneumonitis. Int J Clin Oncol. 2015;20(1):45–52.

    Article  PubMed  Google Scholar 

  17. Glick D, Lyen S, Kandel S, Shapera S, Le LW, Lindsay P, et al. Impact of pretreatment interstitial lung disease on radiation pneumonitis and survival in patients treated with lung stereotactic body radiation therapy (SBRT). Clin Lung Cancer. 2018;19(2):e219–e26.

    Article  PubMed  Google Scholar 

  18. Kreuter M, Ehlers-Tenenbaum S, Schaaf M, Oltmanns U, Palmowski K, Hoffmann H, et al. Treatment and outcome of lung cancer in idiopathic interstitial pneumonias. Sarcoidosis Vasc Diffuse Lung Dis. 2015;31(4):266–74.

    PubMed  Google Scholar 

  19. Onishi H, Marino K, Yamashita H, Terahara A, Onimaru R, Kokubo M, et al. Case series of 23 patients who developed fatal radiation pneumonitis after stereotactic body radiotherapy for lung cancer. Technol Cancer Res Treat. 2018;17:1533033818801323.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fujita J, Bandoh S, Ohtsuki Y, Dobashi N, Hiroi M, Takeuchi T, et al. The role of anti-epithelial cell antibodies in the pathogenesis of bilateral radiation pneumonitis caused by unilateral thoracic irradiation. Respir Med. 2000;94(9):875–80.

    Article  CAS  PubMed  Google Scholar 

  21. Pang Q, Wei Q, Xu T, Yuan X, Lopez Guerra JL, Levy LB, et al. Functional promoter variant rs2868371 of HSPB1 is associated with risk of radiation pneumonitis after chemoradiation for non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;85(5):1332–9.

    Article  CAS  PubMed  Google Scholar 

  22. Mehta V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys. 2005;63(1):5–24.

    Article  PubMed  Google Scholar 

  23. Tonison JJ, Fischer SG, Viehrig M, Welz S, Boeke S, Zwirner K, et al. Radiation pneumonitis after intensity-modulated radiotherapy for esophageal cancer: institutional data and a systematic review. Sci Rep. 2019;9(1):2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang XJ, Sun JG, Sun J, Ming H, Wang XX, Wu L, et al. Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J Cancer Res Clin Oncol. 2012;138(12):2103–16.

    Article  PubMed  Google Scholar 

  25. Rodrigues G, Lock M, D'Souza D, Yu E, Van Dyk J. Prediction of radiation pneumonitis by dose - volume histogram parameters in lung cancer--a systematic review. Radiother Oncol. 2004;71(2):127–38.

    Article  PubMed  Google Scholar 

  26. Bradley JD, Hope A, El Naqa I, Apte A, Lindsay PE, Bosch W, et al. A nomogram to predict radiation pneumonitis, derived from a combined analysis of RTOG 9311 and institutional data. Int J Radiat Oncol Biol Phys. 2007;69(4):985–92.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marks LB, Bentzen SM, Deasy JO, Kong FM, Bradley JD, Vogelius IS, et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S70–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu K, Xu X, Li X, Wang J, Zhu L, Chen X, et al. Radiation pneumonitis in lung cancer treated with volumetric modulated arc therapy. J Thorac Dis. 2018;10(12):6531–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Miles EF, Larrier NA, Kelsey CR, Hubbs JL, Ma J, Yoo S, et al. Intensity-modulated radiotherapy for resected mesothelioma: the Duke experience. Int J Radiat Oncol Biol Phys. 2008;71(4):1143–50.

    Article  PubMed  Google Scholar 

  30. Blom-Goldman U, Svane G, Wennberg B, Lidestahl A, Lind PA. Quantitative assessment of lung density changes after 3-D radiotherapy for breast cancer. Acta Oncol. 2007;46(2):187–93.

    Article  PubMed  Google Scholar 

  31. Blom Goldman U, Wennberg B, Svane G, Bylund H, Lind P. Reduction of radiation pneumonitis by V20-constraints in breast cancer. Radiat Oncol. 2010;5:99.

    Article  PubMed  Google Scholar 

  32. Gokula K, Earnest A, Wong LC. Meta-analysis of incidence of early lung toxicity in 3-dimensional conformal irradiation of breast carcinomas. Radiat Oncol. 2013;8:268.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee TF, Chao PJ, Chang L, Ting HM, Huang YJ. Developing multivariable normal tissue complication probability model to predict the incidence of symptomatic radiation pneumonitis among breast cancer patients. PLoS One. 2015;10(7):e0131736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vogelius IR, Bentzen SM. A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis. Acta Oncol. 2012;51(8):975–83.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhou ZR, Han Q, Liang SX, He XD, Cao NY, Zi YJ. Dosimetric factors and Lyman normal-tissue complication modelling analysis for predicting radiation-induced lung injury in postoperative breast cancer radiotherapy: a prospective study. Oncotarget. 2017;8(20):33855–63.

    PubMed  Google Scholar 

  36. Lind PA, Marks LB, Hardenbergh PH, Clough R, Fan M, Hollis D, et al. Technical factors associated with radiation pneumonitis after local +/− regional radiation therapy for breast cancer. Int J Radiat Oncol Biol Phys. 2002;52(1):137–43.

    Article  PubMed  Google Scholar 

  37. Lind PA, Wennberg B, Gagliardi G, Fornander T. Pulmonary complications following different radiotherapy techniques for breast cancer, and the association to irradiated lung volume and dose. Breast Cancer Res Treat. 2001;68(3):199–210.

    Article  CAS  PubMed  Google Scholar 

  38. Ho AY, Ballangrud A, Li G, Gupta GP, McCormick B, Gewanter R, et al. Long-term pulmonary outcomes of a feasibility study of inverse-planned, multibeam intensity modulated radiation therapy in node-positive breast cancer patients receiving regional nodal irradiation. Int J Radiat Oncol Biol Phys. 2019;103(5):1100–8.

    Article  PubMed  Google Scholar 

  39. Haviland JS, Owen JR, Dewar JA, Agrawal RK, Barrett J, Barrett-Lee PJ, et al. The UK standardisation of breast radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013;14(11):1086–94.

    Article  PubMed  Google Scholar 

  40. Baumann P, Nyman J, Hoyer M, Wennberg B, Gagliardi G, Lax I, et al. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol. 2009;27(20):3290–6.

    Article  PubMed  Google Scholar 

  41. Zheng X, Schipper M, Kidwell K, Lin J, Reddy R, Ren Y, et al. Survival outcome after stereotactic body radiation therapy and surgery for stage I non-small cell lung cancer: a meta-analysis. Int J Radiat Oncol Biol Phys. 2014;90(3):603–11.

    Article  PubMed  Google Scholar 

  42. Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet. 2019;393(10185):2051–8.

    Article  PubMed  Google Scholar 

  43. Zhao J, Yorke ED, Li L, Kavanagh BD, Li XA, Das S, et al. Simple factors associated with radiation-induced lung toxicity after stereotactic body radiation therapy of the thorax: a pooled analysis of 88 studies. Int J Radiat Oncol Biol Phys. 2016;95(5):1357–66.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Grimm J, LaCouture T, Croce R, Yeo I, Zhu Y, Xue J. Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys. 2011;12(2):3368.

    Article  PubMed  Google Scholar 

  45. Pollom EL, Chin AL, Diehn M, Loo BW, Chang DT. Normal tissue constraints for abdominal and thoracic stereotactic body radiotherapy. Semin Radiat Oncol. 2017;27(3):197–208.

    Article  PubMed  Google Scholar 

  46. Hanna GG, Murray L, Patel R, Jain S, Aitken KL, Franks KN, et al. UK consensus on normal tissue dose constraints for stereotactic radiotherapy. Clin Oncol (R Coll Radiol). 2018;30(1):5–14.

    Article  CAS  Google Scholar 

  47. Chun SG, Hu C, Choy H, Komaki RU, Timmerman RD, Schild SE, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol. 2017;35(1):56–62.

    Article  PubMed  Google Scholar 

  48. Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, Wertz H, Stieler F, Jahnke A, et al. Deep inspiration breath hold-based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys. 2016;94(3):478–92.

    Article  PubMed  Google Scholar 

  49. Cole AJ, Hanna GG, Jain S, O'Sullivan JM. Motion management for radical radiotherapy in non-small cell lung cancer. Clin Oncol (R Coll Radiol). 2014;26(2):67–80.

    Article  CAS  Google Scholar 

  50. Sonke JJ, Belderbos J. Adaptive radiotherapy for lung cancer. Semin Radiat Oncol. 2010;20(2):94–106.

    Article  PubMed  Google Scholar 

  51. De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Pechoux C, et al. European organization for research and treatment of cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol. 2017;124(1):1–10.

    Article  PubMed  Google Scholar 

  52. Kim H, Pyo H, Noh JM, Lee W, Park B, Park HY, et al. Preliminary result of definitive radiotherapy in patients with non-small cell lung cancer who have underlying idiopathic pulmonary fibrosis: comparison between X-ray and proton therapy. Radiat Oncol. 2019;14(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McGovern K, Ghaly M, Esposito M, Barnaby K, Seetharamu N. Radiation recall pneumonitis in the setting of immunotherapy and radiation: a focused review. Future Sci OA. 2019;5(5):FSO378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ding X, Ji W, Li J, Zhang X, Wang L. Radiation recall pneumonitis induced by chemotherapy after thoracic radiotherapy for lung cancer. Radiat Oncol. 2011;6:24.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Awad R, Nott L. Radiation recall pneumonitis induced by erlotinib after palliative thoracic radiotherapy for lung cancer: Case report and literature review. Asia Pac J Clin Oncol. 2016;12(1):91–5.

    Article  PubMed  Google Scholar 

  56. Sanchis-Borja M, Parrot A, Sroussi D, Rivin Del Campo E, Fallet V, Cadranel J. Dramatic radiation recall pneumonitis induced by osimertinib after palliative thoracic radiotherapy for lung cancer. J Thorac Oncol. 2019;14(10):e224–e6.

    Article  PubMed  Google Scholar 

  57. Bourgier C, Massard C, Moldovan C, Soria JC, Deutsch E. Total recall of radiotherapy with mTOR inhibitors: a novel and potentially frequent side-effect? Ann Oncol. 2011;22(2):485–6.

    Article  CAS  PubMed  Google Scholar 

  58. Schwarte S, Wagner K, Karstens JH, Bremer M. Radiation recall pneumonitis induced by gemcitabine. Strahlenther Onkol. 2007;183(4):215–7.

    Article  PubMed  Google Scholar 

  59. Antonadou D, Coliarakis N, Synodinou M, Athanassiou H, Kouveli A, Verigos C, et al. Randomized phase III trial of radiation treatment +/− amifostine in patients with advanced-stage lung cancer. Int J Radiat Oncol Biol Phys. 2001;51(4):915–22.

    Article  CAS  PubMed  Google Scholar 

  60. Ozturk B, Egehan I, Atavci S, Kitapci M. Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: a double-blind randomized trial. Int J Radiat Oncol Biol Phys. 2004;58(1):213–9.

    Article  CAS  PubMed  Google Scholar 

  61. Kwok E, Chan CK. Corticosteroids and azathioprine do not prevent radiation-induced lung injury. Can Respir J. 1998;5(3):211–4.

    Article  CAS  PubMed  Google Scholar 

  62. Kim KI, Jun JH, Baek H, Kim JH, Lee BJ, Jung HJ. Oral administration of herbal medicines for radiation pneumonitis in lung cancer patients: a systematic review and meta-analysis. PLoS One. 2018;13(5):e0198015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang LW, Fu XL, Clough R, Sibley G, Fan M, Bentel GC, et al. Can angiotensin-converting enzyme inhibitors protect against symptomatic radiation pneumonitis? Radiat Res. 2000;153(4):405–10.

    Article  CAS  PubMed  Google Scholar 

  64. Williams JP, Johnston CJ, Finkelstein JN. Treatment for radiation-induced pulmonary late effects: spoiled for choice or looking in the wrong direction? Curr Drug Targets. 2010;11(11):1386–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jain V, Berman AT. Radiation pneumonitis: old problem, new tricks. Cancers (Basel). 2018;10(7):222.

    Article  CAS  Google Scholar 

  66. De Ruysscher D, Granton PV, Lieuwes NG, van Hoof S, Wollin L, Weynand B, et al. Nintedanib reduces radiation-induced microscopic lung fibrosis but this cannot be monitored by CT imaging: a preclinical study with a high precision image-guided irradiator. Radiother Oncol. 2017;124(3):482–7.

    Article  CAS  PubMed  Google Scholar 

  67. Wollin L, Distler JHW, Redente EF, Riches DWH, Stowasser S, Schlenker-Herceg R, et al. Potential of nintedanib in treatment of progressive fibrosing interstitial lung diseases. Eur Respir J. 2019;54(3)

    Google Scholar 

  68. Simone NL, Soule BP, Gerber L, Augustine E, Smith S, Altemus RM, et al. Oral pirfenidone in patients with chronic fibrosis resulting from radiotherapy: a pilot study. Radiat Oncol. 2007;2:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Knuppel L, Ishikawa Y, Aichler M, Heinzelmann K, Hatz R, Behr J, et al. A novel antifibrotic mechanism of nintedanib and pirfenidone. Inhibition of collagen fibril assembly. Am J Respir Cell Mol Biol. 2017;57(1):77–90.

    Article  PubMed  Google Scholar 

  70. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42.

    Article  PubMed  Google Scholar 

  71. Feng M, Moran JM, Koelling T, Chughtai A, Chan JL, Freedman L, et al. Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys. 2011;79(1):10–8.

    Article  PubMed  Google Scholar 

  72. Duane F, Aznar MC, Bartlett F, Cutter DJ, Darby SC, Jagsi R, et al. A cardiac contouring atlas for radiotherapy. Radiother Oncol. 2017;122(3):416–22.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cuomo JR, Sharma GK, Conger PD, Weintraub NL. Novel concepts in radiation-induced cardiovascular disease. World J Cardiol. 2016;8(9):504–19.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Haydont V, Mathe D, Bourgier C, Abdelali J, Aigueperse J, Bourhis J, et al. Induction of CTGF by TGF-beta1 in normal and radiation enteritis human smooth muscle cells: Smad/Rho balance and therapeutic perspectives. Radiother Oncol. 2005;76(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  76. Lee CH, Shah B, Moioli EK, Mao JJ. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010;120(9):3340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weigel C, Schmezer P, Plass C, Popanda O. Epigenetics in radiation-induced fibrosis. Oncogene. 2015;34(17):2145–55.

    Article  CAS  PubMed  Google Scholar 

  78. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16(2):187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kong FM, Ten Haken RK, Schipper M, Frey KA, Hayman J, Gross M, et al. Effect of midtreatment PET/CT-adapted radiation therapy with concurrent chemotherapy in patients with locally advanced non-small-cell lung cancer: a phase 2 clinical trial. JAMA Oncol. 2017;3(10):1358–65.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Speirs CK, DeWees TA, Rehman S, Molotievschi A, Velez MA, Mullen D, et al. Heart dose is an independent dosimetric predictor of overall survival in locally advanced non-small cell lung cancer. J Thorac Oncol. 2017;12(2):293–301.

    Article  PubMed  Google Scholar 

  81. Dess RT, Sun Y, Matuszak MM, Sun G, Soni PD, Bazzi L, et al. Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. J Clin Oncol. 2017;35(13):1395–402.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang K, Pearlstein KA, Patchett ND, Deal AM, Mavroidis P, Jensen BC, et al. Heart dosimetric analysis of three types of cardiac toxicity in patients treated on dose-escalation trials for Stage III non-small-cell lung cancer. Radiother Oncol. 2017;125(2):293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vivekanandan S, Landau DB, Counsell N, Warren DR, Khwanda A, Rosen SD, et al. The impact of cardiac radiation dosimetry on survival after radiation therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2017;99(1):51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cuzick J, Stewart H, Rutqvist L, Houghton J, Edwards R, Redmond C, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol. 1994;12(3):447–53.

    Article  CAS  PubMed  Google Scholar 

  85. Darby S, McGale P, Peto R, Granath F, Hall P, Ekbom A. Mortality from cardiovascular disease more than 10 years after radiotherapy for breast cancer: nationwide cohort study of 90 000 Swedish women. BMJ. 2003;326(7383):256–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Darby SC, McGale P, Taylor CW, Peto R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 2005;6(8):557–65.

    Article  PubMed  Google Scholar 

  87. Roychoudhuri R, Robinson D, Putcha V, Cuzick J, Darby S, Moller H. Increased cardiovascular mortality more than fifteen years after radiotherapy for breast cancer: a population-based study. BMC Cancer. 2007;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Piroth MD, Baumann R, Budach W, Dunst J, Feyer P, Fietkau R, et al. Heart toxicity from breast cancer radiotherapy: Current findings, assessment, and prevention. Strahlenther Onkol. 2019;195(1):1–12.

    Article  PubMed  Google Scholar 

  89. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.

    Article  CAS  PubMed  Google Scholar 

  90. van den Bogaard VA, Ta BD, van der Schaaf A, Bouma AB, Middag AM, Bantema-Joppe EJ, et al. Validation and modification of a prediction model for acute cardiac events in patients with breast cancer treated with radiotherapy based on three-dimensional dose distributions to cardiac substructures. J Clin Oncol. 2017;35(11):1171–8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Marks LB, Yu X, Prosnitz RG, Zhou SM, Hardenbergh PH, Blazing M, et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 2005;63(1):214–23.

    Article  PubMed  Google Scholar 

  92. Erven K, Jurcut R, Weltens C, Giusca S, Ector J, Wildiers H, et al. Acute radiation effects on cardiac function detected by strain rate imaging in breast cancer patients. Int J Radiat Oncol Biol Phys. 2011;79(5):1444–51.

    Article  PubMed  Google Scholar 

  93. Moignier A, Broggio D, Derreumaux S, Beaudre A, Girinsky T, Paul JF, et al. Coronary stenosis risk analysis following Hodgkin lymphoma radiotherapy: a study based on patient specific artery segments dose calculation. Radiother Oncol. 2015;117(3):467–72.

    Article  PubMed  Google Scholar 

  94. Skytta T, Tuohinen S, Boman E, Virtanen V, Raatikainen P, Kellokumpu-Lehtinen PL. Troponin T-release associates with cardiac radiation doses during adjuvant left-sided breast cancer radiotherapy. Radiat Oncol. 2015;10:141.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Whelan TJ, Pignol JP, Levine MN, Julian JA, MacKenzie R, Parpia S, et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362(6):513–20.

    Article  CAS  PubMed  Google Scholar 

  96. James M, Swadi S, Yi M, Johansson L, Robinson B, Dixit A. Ischaemic heart disease following conventional and hypofractionated radiation treatment in a contemporary breast cancer series. J Med Imaging Radiat Oncol. 2018;62(3):425–31.

    Article  PubMed  Google Scholar 

  97. Stam B, Peulen H, Guckenberger M, Mantel F, Hope A, Werner-Wasik M, et al. Dose to heart substructures is associated with non-cancer death after SBRT in stage I-II NSCLC patients. Radiother Oncol. 2017;123(3):370–5.

    Article  PubMed  Google Scholar 

  98. Reshko LB, Kalman NS, Hugo GD, Weiss E. Cardiac radiation dose distribution, cardiac events and mortality in early-stage lung cancer treated with stereotactic body radiation therapy (SBRT). J Thorac Dis. 2018;10(4):2346–56.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tembhekar AR, Wright CL, Daly ME. Cardiac dose and survival after stereotactic body radiotherapy for early-stage non-small-cell lung cancer. Clin Lung Cancer. 2017;18(3):293–8.

    Article  PubMed  Google Scholar 

  100. Lancellotti P, Nkomo VT, Badano LP, Bergler-Klein J, Bogaert J, Davin L, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14(8):721–40.

    Article  PubMed  Google Scholar 

  101. Ha CS, Hodgson DC, Advani R, Dabaja BS, Dhakal S, Flowers CR, et al. ACR appropriateness criteria follow-up of Hodgkin lymphoma. J Am Coll Radiol. 2014;11(11):1026-33 e3.

    Article  Google Scholar 

  102. van Leeuwen-Segarceanu EM, Bos WJ, Dorresteijn LD, Rensing BJ, der Heyden JA, Vogels OJ, et al. Screening Hodgkin lymphoma survivors for radiotherapy induced cardiovascular disease. Cancer Treat Rev. 2011;37(5):391–403.

    Article  PubMed  Google Scholar 

  103. Chen AB, Punglia RS, Kuntz KM, Mauch PM, Ng AK. Cost effectiveness and screening interval of lipid screening in Hodgkin’s lymphoma survivors. J Clin Oncol. 2009;27(32):5383–9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Armstrong GT, Plana JC, Zhang N, Srivastava D, Green DM, Ness KK, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 2012;30(23):2876–84.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kruse JJ, Strootman EG, Wondergem J. Effects of amifostine on radiation-induced cardiac damage. Acta Oncol. 2003;42(1):4–9.

    Article  CAS  PubMed  Google Scholar 

  106. Ran XZ, Ran X, Zong ZW, Liu DQ, Xiang GM, Su YP, et al. Protective effect of atorvastatin on radiation-induced vascular endothelial cell injury in vitro. J Radiat Res. 2010;51(5):527–33.

    Article  PubMed  Google Scholar 

  107. van der Veen SJ, Ghobadi G, de Boer RA, Faber H, Cannon MV, Nagle PW, et al. ACE inhibition attenuates radiation-induced cardiopulmonary damage. Radiother Oncol. 2015;114(1):96–103.

    Article  CAS  PubMed  Google Scholar 

  108. Gurses I, Ozeren M, Serin M, Yucel N, Erkal HS. Histopathological evaluation of melatonin as a protective agent in heart injury induced by radiation in a rat model. Pathol Res Pract. 2014;210(12):863–71.

    Article  CAS  PubMed  Google Scholar 

  109. Bertog SC, Thambidorai SK, Parakh K, Schoenhagen P, Ozduran V, Houghtaling PL, et al. Constrictive pericarditis: etiology and cause-specific survival after pericardiectomy. J Am Coll Cardiol. 2004;43(8):1445–52.

    Article  PubMed  Google Scholar 

  110. Avgerinos D, Rabitnokov Y, Worku B, Neragi-Miandoab S, Girardi LN. Fifteen-year experience and outcomes of pericardiectomy for constrictive pericarditis. J Card Surg. 2014;29(4):434–8.

    Article  PubMed  Google Scholar 

  111. Szabo G, Schmack B, Bulut C, Soos P, Weymann A, Stadtfeld S, et al. Constrictive pericarditis: risks, aetiologies and outcomes after total pericardiectomy: 24 years of experience. Eur J Cardiothorac Surg. 2013;44(6):1023–8; discussion 8

    Article  PubMed  Google Scholar 

  112. DePasquale EC, Nasir K, Jacoby DL. Outcomes of adults with restrictive cardiomyopathy after heart transplantation. J Heart Lung Transplant. 2012;31(12):1269–75.

    Article  PubMed  Google Scholar 

  113. Saxena P, Joyce LD, Daly RC, Kushwaha SS, Schirger JA, Rosedahl J, et al. Cardiac transplantation for radiation-induced cardiomyopathy: the Mayo Clinic experience. Ann Thorac Surg. 2014;98(6):2115–21.

    Article  PubMed  Google Scholar 

  114. Galper SL, Yu JB, Mauch PM, Strasser JF, Silver B, Lacasce A, et al. Clinically significant cardiac disease in patients with Hodgkin lymphoma treated with mediastinal irradiation. Blood. 2011;117(2):412–8.

    Article  CAS  PubMed  Google Scholar 

  115. Mollmann H, Bestehorn K, Bestehorn M, Papoutsis K, Fleck E, Ertl G, et al. In-hospital outcome of transcatheter vs. surgical aortic valve replacement in patients with aortic valve stenosis: complete dataset of patients treated in 2013 in Germany. Clin Res Cardiol. 2016;105(6):553–9.

    Article  PubMed  Google Scholar 

  116. Adams DH, Popma JJ, Reardon MJ, Yakubov SJ, Coselli JS, Deeb GM, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med. 2014;370(19):1790–8.

    Article  CAS  PubMed  Google Scholar 

  117. Beohar N, Kirtane AJ, Blackstone E, Waksman R, Holmes D Jr, Minha S, et al. Trends in complications and outcomes of patients undergoing transfemoral transcatheter aortic valve replacement: experience from the PARTNER continued access registry. JACC Cardiovasc Interv. 2016;9(4):355–63.

    Article  PubMed  Google Scholar 

  118. Schomig K, Ndrepepa G, Mehilli J, Pache J, Kastrati A, Schomig A. Thoracic radiotherapy in patients with lymphoma and restenosis after coronary stent placement. Catheter Cardiovasc Interv. 2007;70(3):359–65.

    Article  PubMed  Google Scholar 

  119. Liang JJ, Sio TT, Slusser JP, Lennon RJ, Miller RC, Sandhu G, et al. Outcomes after percutaneous coronary intervention with stents in patients treated with thoracic external beam radiation for cancer. JACC Cardiovasc Interv. 2014;7(12):1412–20.

    Article  PubMed  Google Scholar 

  120. Handa N, McGregor CG, Danielson GK, Orszulak TA, Mullany CJ, Daly RC, et al. Coronary artery bypass grafting in patients with previous mediastinal radiation therapy. J Thorac Cardiovasc Surg. 1999;117(6):1136–42.

    Article  CAS  PubMed  Google Scholar 

  121. Chang AS, Smedira NG, Chang CL, Benavides MM, Myhre U, Feng J, et al. Cardiac surgery after mediastinal radiation: extent of exposure influences outcome. J Thorac Cardiovasc Surg. 2007;133(2):404–13.

    Article  PubMed  Google Scholar 

  122. Andolino DL, Forquer JA, Henderson MA, Barriger RB, Shapiro RH, Brabham JG, et al. Chest wall toxicity after stereotactic body radiotherapy for malignant lesions of the lung and liver. Int J Radiat Oncol Biol Phys. 2011;80(3):692–7.

    Article  PubMed  Google Scholar 

  123. Nambu A, Onishi H, Aoki S, Tominaga L, Kuriyama K, Araya M, et al. Rib fracture after stereotactic radiotherapy for primary lung cancer: prevalence, degree of clinical symptoms, and risk factors. BMC Cancer. 2013;13:68.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mutter RW, Liu F, Abreu A, Yorke E, Jackson A, Rosenzweig KE. Dose-volume parameters predict for the development of chest wall pain after stereotactic body radiation for lung cancer. Int J Radiat Oncol Biol Phys. 2012;82(5):1783–90.

    Article  PubMed  Google Scholar 

  125. Woody NM, Videtic GM, Stephans KL, Djemil T, Kim Y, Xia P. Predicting chest wall pain from lung stereotactic body radiotherapy for different fractionation schemes. Int J Radiat Oncol Biol Phys. 2012;83(1):427–34.

    Article  PubMed  Google Scholar 

  126. Bongers EM, Haasbeek CJ, Lagerwaard FJ, Slotman BJ, Senan S. Incidence and risk factors for chest wall toxicity after risk-adapted stereotactic radiotherapy for early-stage lung cancer. J Thorac Oncol. 2011;6(12):2052–7.

    Article  PubMed  Google Scholar 

  127. Pacheco R, Stock H. Effects of radiation on bone. Curr Osteoporos Rep. 2013;11(4):299–304.

    Article  PubMed  Google Scholar 

  128. Knopse WHBJ, Crosby WH. Regeneration of locally irradiated bone marrow. I. Dose dependent, long-term changes in the rat, with particular emphasis upon vascular and stromal reaction. Blood. 1966;28(3):398–415.

    Google Scholar 

  129. Pitkanen MA, Hopewell JW. Functional changes in the vascularity of the irradiated rat femur. Implications for late effects. Acta Radiol Oncol. 1983;22(3):253–6.

    Article  CAS  PubMed  Google Scholar 

  130. Hui SK, Sharkey L, Kidder LS, Zhang Y, Fairchild G, Coghill K, et al. The influence of therapeutic radiation on the patterns of bone marrow in ovary-intact and ovariectomized mice. PLoS One. 2012;7(8):e42668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Masiukiewicz US, Mitnick M, Grey AB, Insogna KL. Estrogen modulates parathyroid hormone-induced interleukin-6 production in vivo and in vitro. Endocrinology. 2000;141(7):2526–31.

    Article  CAS  PubMed  Google Scholar 

  132. Pierce SM, Recht A, Lingos TI, Abner A, Vicini F, Silver B, et al. Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int J Radiat Oncol Biol Phys. 1992;23(5):915–23.

    Article  CAS  PubMed  Google Scholar 

  133. Overgaard M. Spontaneous radiation-induced rib fractures in breast cancer patients treated with postmastectomy irradiation. A clinical radiobiological analysis of the influence of fraction size and dose-response relationships on late bone damage. Acta Oncol. 1988;27(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  134. Brashears JH, Dragun AE, Jenrette JM. Late chest wall toxicity after MammoSite breast brachytherapy. Brachytherapy. 2009;8(1):19–25.

    Article  PubMed  Google Scholar 

  135. Ma JT, Liu Y, Sun L, Milano MT, Zhang SL, Huang LT, et al. Chest wall toxicity after stereotactic body radiation therapy: a pooled analysis of 57 studies. Int J Radiat Oncol Biol Phys. 2019;103(4):843–50.

    Article  PubMed  Google Scholar 

  136. Kuo B, Urma D. Esophagus-anatomy and development. GI Motility Online. 2006;

    Google Scholar 

  137. Fleming C, Cagney DN, O’Keeffe S, Brennan SM, Armstrong JG, McClean B. Normal tissue considerations and dose volume constraints in the moderately hypofractionated treatment of non-small cell lung cancer. Radiother Oncol. 2016;119(3):423–31.

    Article  PubMed  Google Scholar 

  138. Chapet O, Kong FM, Lee JS, Hayman JA, Ten Haken RK. Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer. Radiother Oncol. 2005;77(2):176–81.

    Article  PubMed  Google Scholar 

  139. Ahn SJ, Kahn D, Zhou S, Yu X, Hollis D, Shafman TD, et al. Dosimetric and clinical predictors for radiation-induced esophageal injury. Int J Radiat Oncol Biol Phys. 2005;61(2):335–47.

    Article  PubMed  Google Scholar 

  140. Dieleman EM, Senan S, Vincent A, Lagerwaard FJ, Slotman BJ, van Sornsen de Koste JR. Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration. Int J Radiat Oncol Biol Phys. 2007;67(3):775–80.

    Article  PubMed  Google Scholar 

  141. Fairchild A, Harris K, Barnes E, Wong R, Lutz S, Bezjak A, et al. Palliative thoracic radiotherapy for lung cancer: a systematic review. J Clin Oncol. 2008;26(24):4001–11.

    Article  PubMed  Google Scholar 

  142. Bar-Ad V, Ohri N, Werner-Wasik M. Esophagitis, treatment-related toxicity in non-small cell lung cancer. Rev Recent Clin Trials. 2012;7(1):31–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Stevens R, Macbeth F, Toy E, Coles B, Lester JF. Palliative radiotherapy regimens for patients with thoracic symptoms from non-small cell lung cancer. Cochrane Database Syst Rev. 2015;1:CD002143.

    PubMed  Google Scholar 

  144. Baker S, Fairchild A. Radiation-induced esophagitis in lung cancer. Lung Cancer (Auckl). 2016;7:119–27.

    Google Scholar 

  145. Palma DA, Senan S, Oberije C, Belderbos J, de Dios NR, Bradley JD, et al. Predicting esophagitis after chemoradiation therapy for non-small cell lung cancer: an individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;87(4):690–6.

    Article  PubMed  Google Scholar 

  146. Sun Z, Li J, Lin M, Zhang S, Luo J, Tang Y. An RNA-seq-based expression profiling of radiation-induced esophageal injury in a rat model. Dose Response 2019;17(2):1559325819843373.

    Google Scholar 

  147. Epperly MW, Gretton JA, DeFilippi SJ, Greenberger JS, Sikora CA, Liggitt D, et al. Modulation of radiation-induced cytokine elevation associated with esophagitis and esophageal stricture by manganese superoxide dismutase-plasmid/liposome (SOD2-PL) gene therapy. Radiat Res. 2001;155(1 Pt 1):2–14.

    Article  CAS  PubMed  Google Scholar 

  148. Kim KS, Jeon SU, Lee CJ, Kim YE, Bok S, Hong BJ, et al. Radiation-induced esophagitis in vivo and in vitro reveals that epidermal growth factor is a potential candidate for therapeutic intervention strategy. Int J Radiat Oncol Biol Phys. 2016;95(3):1032–41.

    Article  CAS  PubMed  Google Scholar 

  149. Murro D, Jakate S. Radiation esophagitis. Arch Pathol Lab Med. 2015;139(6):827–30.

    Article  PubMed  Google Scholar 

  150. Hirota S, Tsujino K, Hishikawa Y, Watanabe H, Kono K, Soejima T, et al. Endoscopic findings of radiation esophagitis in concurrent chemoradiotherapy for intrathoracic malignancies. Radiother Oncol. 2001;58(3):273–8.

    Article  CAS  PubMed  Google Scholar 

  151. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  152. Seaman WB, Ackerman LV. The effect of radiation on the esophagus; a clinical and histologic study of the effects produced by the betatron. Radiology. 1957;68(4):534–41.

    Article  CAS  PubMed  Google Scholar 

  153. Hirota S, Tsujino K, Endo M, Kotani Y, Satouchi M, Kado T, et al. Dosimetric predictors of radiation esophagitis in patients treated for non-small-cell lung cancer with carboplatin/paclitaxel/radiotherapy. Int J Radiat Oncol Biol Phys. 2001;51(2):291–5.

    Article  CAS  PubMed  Google Scholar 

  154. Choy H, Akerley W, Safran H, Graziano S, Chung C, Williams T, et al. Multiinstitutional phase II trial of paclitaxel, carboplatin, and concurrent radiation therapy for locally advanced non-small-cell lung cancer. J Clin Oncol. 1998;16(10):3316–22.

    Article  CAS  PubMed  Google Scholar 

  155. Zhang Z, Xu J, Zhou T, Yi Y, Li H, Sun H, et al. Risk factors of radiation-induced acute esophagitis in non-small cell lung cancer patients treated with concomitant chemoradiotherapy. Radiat Oncol. 2014;9:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Maguire PD, Sibley GS, Zhou SM, Jamieson TA, Light KL, Antoine PA, et al. Clinical and dosimetric predictors of radiation-induced esophageal toxicity. Int J Radiat Oncol Biol Phys. 1999;45(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  157. Bradley J, Deasy JO, Bentzen S, El-Naqa I. Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma. Int J Radiat Oncol Biol Phys. 2004;58(4):1106–13.

    Article  PubMed  Google Scholar 

  158. Werner-Wasik M, Pequignot E, Leeper D, Hauck W, Curran W. Predictors of severe esophagitis include use of concurrent chemotherapy, but not the length of irradiated esophagus: a multivariate analysis of patients with lung cancer treated with nonoperative therapy. Int J Radiat Oncol Biol Phys. 2000;48(3):689–96.

    Article  CAS  PubMed  Google Scholar 

  159. Belderbos J, Heemsbergen W, Hoogeman M, Pengel K, Rossi M, Lebesque J. Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy. Radiother Oncol. 2005;75(2):157–64.

    Article  PubMed  Google Scholar 

  160. Wang S, Campbell J, Stenmark MH, Stanton P, Zhao J, Matuszak MM, et al. A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer. Radiother Oncol. 2018;126(3):506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Werner-Wasik M, Yorke E, Deasy J, Nam J, Marks LB. Radiation dose-volume effects in the esophagus. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S86–93.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wada K, Kishi N, Kanayama N, Hirata T, Ueda Y, Kawaguchi Y, et al. Predictors of acute radiation esophagitis in non-small cell lung cancer patients treated with accelerated hyperfractionated chemoradiotherapy. Anticancer Res. 2019;39(1):491–7.

    Article  PubMed  Google Scholar 

  163. Zehentmayr F, Sohn M, Exeli AK, Wurstbauer K, Troller A, Deutschmann H, et al. Normal tissue complication models for clinically relevant acute esophagitis (>/= grade 2) in patients treated with dose differentiated accelerated radiotherapy (DART-bid). Radiat Oncol. 2015;10:121.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Uyterlinde W, Chen C, Kwint M, de Bois J, Vincent A, Sonke JJ, et al. Prognostic parameters for acute esophagus toxicity in intensity modulated radiotherapy and concurrent chemotherapy for locally advanced non-small cell lung cancer. Radiother Oncol. 2013;107(3):392–7.

    Article  PubMed  Google Scholar 

  165. Huang J, He T, Yang R, Ji T, Li G. Clinical, dosimetric, and position factors for radiation-induced acute esophagitis in intensity-modulated (chemo)radiotherapy for locally advanced non-small-cell lung cancer. Onco Targets Ther. 2018;11:6167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Al-Halabi H, Paetzold P, Sharp GC, Olsen C, Willers H. A contralateral esophagus-sparing technique to limit severe esophagitis associated with concurrent high-dose radiation and chemotherapy in patients with thoracic malignancies. Int J Radiat Oncol Biol Phys. 2015;92(4):803–10.

    Article  PubMed  Google Scholar 

  167. Kao J, Pettit J, Zahid S, Gold KD, Palatt T. Esophagus and contralateral lung-sparing IMRT for locally advanced lung cancer in the community hospital setting. Front Oncol. 2015;5:127.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Ma L, Qiu B, Li Q, Chen L, Wang B, Hu Y, et al. An esophagus-sparing technique to limit radiation esophagitis in locally advanced non-small cell lung cancer treated by simultaneous integrated boost intensity-modulated radiotherapy and concurrent chemotherapy. Radiat Oncol. 2018;13(1):130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Grant JD, Shirvani SM, Tang C, Juloori A, Rebueno NC, Allen PK, et al. Incidence and predictors of severe acute esophagitis and subsequent esophageal stricture in patients treated with accelerated hyperfractionated chemoradiation for limited-stage small cell lung cancer. Pract Radiat Oncol. 2015;5(4):e383–91.

    Article  PubMed  Google Scholar 

  170. Giuliani ME, Lindsay PE, Kwan JY, Sun A, Bezjak A, Le LW, et al. Correlation of dosimetric and clinical factors with the development of esophagitis and radiation pneumonitis in patients with limited-stage small-cell lung carcinoma. Clin Lung Cancer. 2015;16(3):216–20.

    Article  PubMed  Google Scholar 

  171. Kim JW, Kim TH, Kim JH, Lee IJ. Predictors of post-treatment stenosis in cervical esophageal cancer undergoing high-dose radiotherapy. World J Gastroenterol. 2018;24(7):862–9.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Atsumi K, Shioyama Y, Arimura H, Terashima K, Matsuki T, Ohga S, et al. Esophageal stenosis associated with tumor regression in radiotherapy for esophageal cancer: frequency and prediction. Int J Radiat Oncol Biol Phys. 2012;82(5):1973–80.

    Article  PubMed  Google Scholar 

  173. McDermott RL, Armstrong JG, Thirion P, Dunne M, Finn M, Small C, et al. Cancer trials Ireland (ICORG) 06-34: a multi-centre clinical trial using three-dimensional conformal radiation therapy to reduce the toxicity of palliative radiation for lung cancer. Radiother Oncol. 2018;127(2):253–8.

    Article  PubMed  Google Scholar 

  174. Granton PV, Palma DA, Louie AV. Intentional avoidance of the esophagus using intensity modulated radiation therapy to reduce dysphagia after palliative thoracic radiation. Radiat Oncol. 2017;12(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Duijm M, Schillemans W, Aerts JG, Heijmen B, Nuyttens JJ. Dose and volume of the irradiated main Bronchi and related side effects in the treatment of central lung tumors with stereotactic radiotherapy. Semin Radiat Oncol. 2016;26(2):140–8.

    Article  PubMed  Google Scholar 

  176. Yau V, Lindsay P, Le L, Lau A, Wong O, Glick D, et al. Low incidence of esophageal toxicity after lung stereotactic body radiation therapy: are current esophageal dose constraints too conservative? Int J Radiat Oncol Biol Phys. 2018;101(3):574–80.

    Article  PubMed  Google Scholar 

  177. Duijm M, Tekatli H, Oomen-de Hoop E, Verbakel W, Schillemans W, Slotman BJ, et al. Esophagus toxicity after stereotactic and hypofractionated radiotherapy for central lung tumors: normal tissue complication probability modeling. Radiother Oncol. 2018;127(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  178. Wu AJ, Williams E, Modh A, Foster A, Yorke E, Rimner A, et al. Dosimetric predictors of esophageal toxicity after stereotactic body radiotherapy for central lung tumors. Radiother Oncol. 2014;112(2):267–71.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Stephans KL, Djemil T, Diaconu C, Reddy CA, Xia P, Woody NM, et al. Esophageal dose tolerance to hypofractionated stereotactic body radiation therapy: risk factors for late toxicity. Int J Radiat Oncol Biol Phys. 2014;90(1):197–202.

    Article  PubMed  Google Scholar 

  180. Senzer N. A phase III randomized evaluation of amifostine in stage IIIA/IIIB non-small cell lung cancer patients receiving concurrent carboplatin, paclitaxel, and radiation therapy followed by gemcitabine and cisplatin intensification: preliminary findings. Semin Oncol. 2002;29(6 Suppl 19):38–41.

    Article  CAS  PubMed  Google Scholar 

  181. Arquette M, Wasserman T, Govindan R, Garfield D, Senzer N, Gillenwater H, et al. Phase II evaluation of amifostine as an esophageal mucosal protectant in the treatment of limited-stage small cell lung cancer with chemotherapy and twice-daily radiation. Semin Radiat Oncol. 2002;12(1 Suppl 1):59–61.

    Article  PubMed  Google Scholar 

  182. Movsas B, Scott C, Langer C, Werner-Wasik M, Nicolaou N, Komaki R, et al. Randomized trial of amifostine in locally advanced non-small-cell lung cancer patients receiving chemotherapy and hyperfractionated radiation: radiation therapy oncology group trial 98-01. J Clin Oncol. 2005;23(10):2145–54.

    Article  CAS  PubMed  Google Scholar 

  183. Antonadou D, Throuvalas N, Petridis A, Bolanos N, Sagriotis A, Synodinou M. Effect of amifostine on toxicities associated with radiochemotherapy in patients with locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2003;57(2):402–8.

    Article  CAS  PubMed  Google Scholar 

  184. Koukourakis MI, Giatromanolaki A, Chong W, Simopoulos C, Polychronidis A, Sivridis E, et al. Amifostine induces anaerobic metabolism and hypoxia-inducible factor 1 alpha. Cancer Chemother Pharmacol. 2004;53(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  185. Komaki R, Lee JS, Milas L, Lee HK, Fossella FV, Herbst RS, et al. Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non-small-cell lung cancer: report of a randomized comparative trial. Int J Radiat Oncol Biol Phys. 2004;58(5):1369–77.

    Article  CAS  PubMed  Google Scholar 

  186. Leong SS, Tan EH, Fong KW, Wilder-Smith E, Ong YK, Tai BC, et al. Randomized double-blind trial of combined modality treatment with or without amifostine in unresectable stage III non-small-cell lung cancer. J Clin Oncol. 2003;21(9):1767–74.

    Article  CAS  PubMed  Google Scholar 

  187. Sarna L, Swann S, Langer C, Werner-Wasik M, Nicolaou N, Komaki R, et al. Clinically meaningful differences in patient-reported outcomes with amifostine in combination with chemoradiation for locally advanced non-small-cell lung cancer: an analysis of RTOG 9801. Int J Radiat Oncol Biol Phys. 2008;72(5):1378–84.

    Article  PubMed  Google Scholar 

  188. Hensley ML, Hagerty KL, Kewalramani T, Green DM, Meropol NJ, Wasserman TH, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27(1):127–45.

    Article  CAS  PubMed  Google Scholar 

  189. Fogh SE, Deshmukh S, Berk LB, Dueck AC, Roof K, Yacoub S, et al. A randomized Phase 2 trial of prophylactic Manuka Honey for the reduction of chemoradiation therapy-induced esophagitis during the treatment of lung cancer: results of NRG oncology RTOG 1012. Int J Radiat Oncol Biol Phys. 2017;97(4):786–96.

    Article  CAS  PubMed  Google Scholar 

  190. Papanikolopoulou A, Syrigos KN, Drakoulis N. The role of glutamine supplementation in thoracic and upper aerodigestive malignancies. Nutr Cancer. 2015;67(2):231–7.

    Article  CAS  PubMed  Google Scholar 

  191. Topkan E, Yavuz MN, Onal C, Yavuz AA. Prevention of acute radiation-induced esophagitis with glutamine in non-small cell lung cancer patients treated with radiotherapy: evaluation of clinical and dosimetric parameters. Lung Cancer. 2009;63(3):393–9.

    Article  PubMed  Google Scholar 

  192. Topkan E, Parlak C, Topuk S, Pehlivan B. Influence of oral glutamine supplementation on survival outcomes of patients treated with concurrent chemoradiotherapy for locally advanced non-small cell lung cancer. BMC Cancer. 2012;12:502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Algara M, Rodriguez N, Vinals P, Lacruz M, Foro P, Reig A, et al. Prevention of radiochemotherapy-induced esophagitis with glutamine: results of a pilot study. Int J Radiat Oncol Biol Phys. 2007;69(2):342–9.

    Article  CAS  PubMed  Google Scholar 

  194. Yoshida S, Matsui M, Shirouzu Y, Fujita H, Yamana H, Shirouzu K. Effects of glutamine supplements and radiochemotherapy on systemic immune and gut barrier function in patients with advanced esophageal cancer. Ann Surg. 1998;227(4):485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yoshida S, Kaibara A, Ishibashi N, Shirouzu K. Glutamine supplementation in cancer patients. Nutrition. 2001;17(9):766–8.

    Article  CAS  PubMed  Google Scholar 

  196. Hillman GG. Soy isoflavones protect normal tissues while enhancing radiation responses. Semin Radiat Oncol. 2019;29(1):62–71.

    Article  PubMed  Google Scholar 

  197. Fountain MD, Abernathy LM, Lonardo F, Rothstein SE, Dominello MM, Yunker CK, et al. Radiation-induced esophagitis is mitigated by Soy Isoflavones. Front Oncol. 2015;5:238.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Berkey FJ. Managing the adverse effects of radiation therapy. Am Fam Physician. 2010;82(4):381–8.. 94

    PubMed  Google Scholar 

  199. Sasso FS, Sasso G, Marsiglia HR, de Palma G, Schiavone C, Barone A, et al. Pharmacological and dietary prophylaxis and treatment of acute actinic esophagitis during mediastinal radiotherapy. Dig Dis Sci. 2001;46(4):746–9.

    Article  CAS  PubMed  Google Scholar 

  200. Seres DS, Valcarcel M, Guillaume A. Advantages of enteral nutrition over parenteral nutrition. Ther Adv Gastroenterol. 2013;6(2):157–67.

    Article  Google Scholar 

  201. Bamalan OA SMA, Thorax, Heart Great Vessels. [Updated 2019 Oct 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547680/.

  202. Shahoud JS BSA, Thorax, Heart Aorta. [Updated 2019 Feb 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538140/.

  203. Tucker WD BBA, Thorax, Heart Pulmonary Arteries. [Updated 2018 Dec 9]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534812/.

  204. White HJ SMA, Thorax, Superior Vena Cava. [Updated 2019 Aug 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545255/.

  205. Sundjaja JH BBA, Thorax, Lung Veins. [Updated 2019 Jul 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545205/.

  206. Nishimura S, Takeda A, Sanuki N, Ishikura S, Oku Y, Aoki Y, et al. Toxicities of organs at risk in the mediastinal and hilar regions following stereotactic body radiotherapy for centrally located lung tumors. J Thorac Oncol. 2014;9(9):1370–6.

    Article  CAS  PubMed  Google Scholar 

  207. Ichinose T, Nakazato Y, Miyano H, Kimura T, Yamashita H, Takizawa K, et al. Severe infundibular pulmonary stenosis and coronary artery stenosis with ventricular tachycardia 24 years after mediastinal irradiation. Intern Med. 2005;44(9):963–6.

    Article  PubMed  Google Scholar 

  208. Makker HK, Barnes PC. Fatal haemoptysis from the pulmonary artery as a late complication of pulmonary irradiation. Thorax. 1991;46(8):609–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Van Putten JW, Schlosser NJ, Vujaskovic Z, Leest AH, Groen HJ. Superior vena cava obstruction caused by radiation induced venous fibrosis. Thorax. 2000;55(3):245–6.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014;32(3):103–15.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Lee CB, Stinchcombe TE, Moore DT, Morris DE, Hayes DN, Halle J, et al. Late complications of high-dose (>/=66 Gy) thoracic conformal radiation therapy in combined modality trials in unresectable stage III non-small cell lung cancer. J Thorac Oncol. 2009;4(1):74–9.

    Article  PubMed  Google Scholar 

  212. Yoo GS, Oh D, Pyo H, Ahn YC, Noh JM, Park HC, et al. Concurrent chemo-radiotherapy for unresectable non-small cell lung cancer invading adjacent great vessels on radiologic findings: is it safe? J Radiat Res. 2019;60(2):234–41.

    Article  PubMed  Google Scholar 

  213. Han CB, Wang WL, Quint L, Xue JX, Matuszak M, Ten Haken R, et al. Pulmonary artery invasion, high-dose radiation, and overall survival in patients with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;89(2):313–21.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Ma JT, Sun L, Sun X, Xiong ZC, Liu Y, Zhang SL, et al. Is pulmonary artery a dose-limiting organ at risk in non-small cell lung cancer patients treated with definitive radiotherapy? Radiat Oncol. 2017;12(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Evans JD, Gomez DR, Amini A, Rebueno N, Allen PK, Martel MK, et al. Aortic dose constraints when reirradiating thoracic tumors. Radiother Oncol. 2013;106(3):327–32.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Trombetta MG, Colonias A, Makishi D, Keenan R, Werts ED, Landreneau R, et al. Tolerance of the aorta using intraoperative iodine-125 interstitial brachytherapy in cancer of the lung. Brachytherapy. 2008;7(1):50–4.

    Article  PubMed  Google Scholar 

  217. Peulen H, Karlsson K, Lindberg K, Tullgren O, Baumann P, Lax I, et al. Toxicity after reirradiation of pulmonary tumours with stereotactic body radiotherapy. Radiother Oncol. 2011;101(2):260–6.

    Article  PubMed  Google Scholar 

  218. Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 2006;24(30):4833–9.

    Article  PubMed  Google Scholar 

  219. Bang A, Bezjak A. Stereotactic body radiotherapy for centrally located stage I non-small cell lung cancer. Transl Lung Cancer Res. 2019;8(1):58–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Xue J, Kubicek G, Patel A, Goldsmith B, Asbell SO, LaCouture TA. Validity of current stereotactic body radiation therapy dose constraints for aorta and major vessels. Semin Radiat Oncol. 2016;26(2):135–9.

    Article  PubMed  Google Scholar 

  221. Bezjak A, Paulus R, Gaspar LE, Timmerman RD, Straube WL, Ryan WF, et al. Safety and efficacy of a five-fraction stereotactic body radiotherapy schedule for centrally located non-small-cell lung cancer: NRG oncology/RTOG 0813 trial. J Clin Oncol. 2019;37(15):1316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ball M PDA, Airway. [Updated 2019 Apr 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459258/.

  223. Taulelle M, Chauvet B, Vincent P, Felix-Faure C, Buciarelli B, Garcia R, et al. High dose rate endobronchial brachytherapy: results and complications in 189 patients. Eur Respir J. 1998;11(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  224. Nomoto Y, Ii N, Murashima S, Yamashita Y, Ochiai S, Takada A, et al. Endobronchial brachytherapy with curative intent: the impact of reference points setting according to the bronchial diameter. J Radiat Res. 2017;58(6):849–53.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Reveiz L, Rueda JR, Cardona AF. Palliative endobronchial brachytherapy for non-small cell lung cancer. Cochrane Database Syst Rev. 2012;12:CD004284.

    PubMed  Google Scholar 

  226. Mehta AC, Dweik RA. Necrosis of the bronchus. Role of radiation. Chest. 1995;108(5):1462–6.

    Article  CAS  PubMed  Google Scholar 

  227. Miller KL, Shafman TD, Anscher MS, Zhou SM, Clough RW, Garst JL, et al. Bronchial stenosis: an underreported complication of high-dose external beam radiotherapy for lung cancer? Int J Radiat Oncol Biol Phys. 2005;61(1):64–9.

    Article  PubMed  Google Scholar 

  228. Kelsey CR, Kahn D, Hollis DR, Miller KL, Zhou SM, Clough RW, et al. Radiation-induced narrowing of the tracheobronchial tree: an in-depth analysis. Lung Cancer. 2006;52(1):111–6.

    Article  PubMed  Google Scholar 

  229. Tekatli H, Senan S, Dahele M, Slotman BJ, Verbakel WF. Stereotactic ablative radiotherapy (SABR) for central lung tumors: plan quality and long-term clinical outcomes. Radiother Oncol. 2015;117(1):64–70.

    Article  PubMed  Google Scholar 

  230. Fakiris AJ, McGarry RC, Yiannoutsos CT, Papiez L, Williams M, Henderson MA, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys. 2009;75(3):677–82.

    Article  PubMed  Google Scholar 

  231. Bral S, Gevaert T, Linthout N, Versmessen H, Collen C, Engels B, et al. Prospective, risk-adapted strategy of stereotactic body radiotherapy for early-stage non-small-cell lung cancer: results of a Phase II trial. Int J Radiat Oncol Biol Phys. 2011;80(5):1343–9.

    Article  PubMed  Google Scholar 

  232. Park HS, Harder EM, Mancini BR, Decker RH. Central versus peripheral tumor location: influence on survival, local control, and toxicity following stereotactic body radiotherapy for primary non-small-cell lung cancer. J Thorac Oncol. 2015;10(5):832–7.

    Article  PubMed  Google Scholar 

  233. Xia T, Li H, Sun Q, Wang Y, Fan N, Yu Y, et al. Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;66(1):117–25.

    Article  PubMed  Google Scholar 

  234. Roach MC, Robinson CG, DeWees TA, Ganachaud J, Przybysz D, Drzymala R, et al. Stereotactic body radiation therapy for central early-stage NSCLC: results of a prospective phase I/II trial. J Thorac Oncol. 2018;13(11):1727–32.

    Article  PubMed  Google Scholar 

  235. Song SY, Choi W, Shin SS, Lee SW, Ahn SD, Kim JH, et al. Fractionated stereotactic body radiation therapy for medically inoperable stage I lung cancer adjacent to central large bronchus. Lung Cancer. 2009;66(1):89–93.

    Article  PubMed  Google Scholar 

  236. Rowe BP, Boffa DJ, Wilson LD, Kim AW, Detterbeck FC, Decker RH. Stereotactic body radiotherapy for central lung tumors. J Thorac Oncol. 2012;7(9):1394–9.

    Article  PubMed  Google Scholar 

  237. Chang JY, Li QQ, Xu QY, Allen PK, Rebueno N, Gomez DR, et al. Stereotactic ablative radiation therapy for centrally located early stage or isolated parenchymal recurrences of non-small cell lung cancer: how to fly in a “no fly zone”. Int J Radiat Oncol Biol Phys. 2014;88(5):1120–8.

    Article  PubMed  Google Scholar 

  238. Modh A, Rimner A, Williams E, Foster A, Shah M, Shi W, et al. Local control and toxicity in a large cohort of central lung tumors treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(5):1168–76.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Kimura T, Nagata Y, Harada H, Hayashi S, Matsuo Y, Takanaka T, et al. Phase I study of stereotactic body radiation therapy for centrally located stage IA non-small cell lung cancer (JROSG10-1). Int J Clin Oncol. 2017;22(5):849–56.

    Article  CAS  PubMed  Google Scholar 

  240. Videtic GMM, Donington J, Giuliani M, Heinzerling J, Karas TZ, Kelsey CR, et al. Stereotactic body radiation therapy for early-stage non-small cell lung cancer: executive summary of an ASTRO evidence-based guideline. Pract Radiat Oncol. 2017;7(5):295–301.

    Article  PubMed  Google Scholar 

  241. Tekatli H, Haasbeek N, Dahele M, De Haan P, Verbakel W, Bongers E, et al. Outcomes of hypofractionated high-dose radiotherapy in poor-risk patients with “ultracentral” non-small cell lung cancer. J Thorac Oncol. 2016;11(7):1081–9.

    Article  PubMed  Google Scholar 

  242. Haseltine JM, Rimner A, Gelblum DY, Modh A, Rosenzweig KE, Jackson A, et al. Fatal complications after stereotactic body radiation therapy for central lung tumors abutting the proximal bronchial tree. Pract Radiat Oncol. 2016;6(2):e27–33.

    Article  PubMed  Google Scholar 

  243. Daly MNJ, Monjazeb A. Safety of stereotactic body radiotherapy for central, ultracentral and paramediastinal lung tumors. J Thorac Oncol. 2017;12:S1066.

    Article  Google Scholar 

  244. Nguyen KNB, Hause DJ, Novak J, Monjazeb AM, Daly ME. Tumor control and toxicity after SBRT for ultracentral, central, and paramediastinal lung tumors. Pract Radiat Oncol. 2019;9(2):e196–202.

    Article  PubMed  Google Scholar 

  245. Lindberg KBP, Brustugun OT, et al. The nordic HILUS-trial – first report of a phase II trial of SBRT of centrally located lung tumors. J Thorac Oncol. 2017;12:S340.

    Article  Google Scholar 

  246. Giuliani M, Mathew AS, Bahig H, Bratman SV, Filion E, Glick D, et al. SUNSET: stereotactic radiation for ultracentral non-small-cell lung Cancer-A safety and efficacy trial. Clin Lung Cancer. 2018;19(4):e529–e32.

    Article  PubMed  Google Scholar 

  247. Ito M, Niho S, Nihei K, Yoh K, Ohmatsu H, Ohe Y. Risk factors associated with fatal pulmonary hemorrhage in locally advanced non-small cell lung cancer treated with chemoradiotherapy. BMC Cancer. 2012;12:27.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Hapani S, Sher A, Chu D, Wu S. Increased risk of serious hemorrhage with bevacizumab in cancer patients: a meta-analysis. Oncology. 2010;79(1–2):27–38.

    Article  CAS  PubMed  Google Scholar 

  249. Topkan E, Selek U, Ozdemir Y, Besen AA, Guler OC, Yildirim BA, et al. Risk factors for fatal pulmonary hemorrhage following concurrent chemoradiotherapy in stage 3B/C squamous-cell lung carcinoma patients. J Oncol. 2018;2018:4518935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Sandler AB, Schiller JH, Gray R, Dimery I, Brahmer J, Samant M, et al. Retrospective evaluation of the clinical and radiographic risk factors associated with severe pulmonary hemorrhage in first-line advanced, unresectable non-small-cell lung cancer treated with Carboplatin and Paclitaxel plus bevacizumab. J Clin Oncol. 2009;27(9):1405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Dickhoff C, Dahele M, Hashemi SM, Senan S, Smit EF, Hartemink KJ, et al. Surgical treatment of complications after high-dose chemoradiotherapy for lung cancer. Ann Thorac Surg. 2017;104(2):436–42.

    Article  PubMed  Google Scholar 

  252. Murgu SD, Egressy K, Laxmanan B, Doblare G, Ortiz-Comino R, Hogarth DK. Central airway obstruction: benign strictures, tracheobronchomalacia, and malignancy-related obstruction. Chest. 2016;150(2):426–41.

    Article  PubMed  Google Scholar 

  253. Cho YC, Kim JH, Park JH, Shin JH, Ko HK, Song HY. Fluoroscopically guided balloon dilation for benign bronchial stricture occurring after radiotherapy in patients with lung cancer. Cardiovasc Intervent Radiol. 2014;37(3):750–5.

    Article  PubMed  Google Scholar 

  254. Jean-Baptiste E. Clinical assessment and management of massive hemoptysis. Crit Care Med. 2000;28(5):1642–7.

    Article  CAS  PubMed  Google Scholar 

  255. Khalil A, Fedida B, Parrot A, Haddad S, Fartoukh M, Carette MF. Severe hemoptysis: from diagnosis to embolization. Diagn Interv Imaging. 2015;96(7–8):775–88.

    Article  CAS  PubMed  Google Scholar 

  256. Swanson KL, Johnson CM, Prakash UB, McKusick MA, Andrews JC, Stanson AW. Bronchial artery embolization: experience with 54 patients. Chest. 2002;121(3):789–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zoto Mustafayev, T., Atalar, B. (2020). Toxicity Management for Thorax Tumors in Radiation Oncology. In: Ozyigit, G., Selek, U. (eds) Prevention and Management of Acute and Late Toxicities in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-37798-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37798-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37797-7

  • Online ISBN: 978-3-030-37798-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics