Skip to main content

Toxicity Management for Central Nervous System Tumors in Radiation Oncology

  • Chapter
  • First Online:
Prevention and Management of Acute and Late Toxicities in Radiation Oncology
  • 639 Accesses

Abstract

Radiation therapy (RT) is used widely for the treatment of primary and metastatic brain tumors. The protection of organs at risk (OAR) in the central nervous system (CNS) is crucial, especially to preserve cognition in cancer survivors. This chapter will outline the pathophysiology of radiation-induced CNS toxicity, biologic and clinical principles of CNS tolerance to radiation, and the treatment strategies of both acute and chronic radiation-induced CNS toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tillmann B. Atlas der Anatomie des Menschen. Heidelberg: Springer; 2005. p. 120–2.

    Google Scholar 

  2. Patestas MA, Gartner LP. A textbook of neuroanatomy. 2nd ed. Hoboken: Wiley; 2016. p. 68–83.

    Google Scholar 

  3. Netter FH. Atlas of human anatomy. 4th ed. Barcelona: Elsevier, Masson; 2007.

    Google Scholar 

  4. Felten DL, O’Banion MK, Maida MS. Spinal cord. In: Netter’s atlas of neuroscience. Amsterdam: Elsevier; 2016. p. 77–83.

    Chapter  Google Scholar 

  5. Irsch K, Guyton D. Anatomy of eyes. In: Encyclopedia of biometrics. Boston: Springer; 2009. p. 11–6.

    Google Scholar 

  6. Jacobson S, Marcus EM, Pugsley S. Neuroanatomy for the neuroscientist. 3rd ed. Cham: Springer; 2017. p. 3–26.

    Google Scholar 

  7. Duvernoy HM. Introduction. In: The human hippocampus. 3rd ed. Berlin: Springer-Verlag; 2005. p. 1.

    Chapter  Google Scholar 

  8. Kannan CR. The anatomy of the pituitary gland. In: Essential Endocrinology. Boston: Springer; 1986.

    Chapter  Google Scholar 

  9. Wright JL, Yom SS, Awan MJ, Dawes S, Fischer-Valuck B, Kudner R, Mailhot Vega R, Rodrigues G. Standardizing normal tissue contouring for radiation therapy treatment planning: an ASTRO consensus paper. Pract Radiat Oncol. 2019;9(2):65–72.

    Article  PubMed  Google Scholar 

  10. Eekers DB, In’t Ven L, Roelofs E, Postma A, Alapetite C, Burnet NG, European Particle Therapy Network of ESTRO, et al. The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology. Radiother Oncol. 2018;128(1):37–43.

    Article  PubMed  Google Scholar 

  11. Brouwer CL, Steenbakkers RJ, Bourhis J, Budach W, Grau C, Grégoire V, van Herk M, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG oncology and TROG consensus guidelines. Radiother Oncol. 2015;117(1):83–90.

    Article  PubMed  Google Scholar 

  12. Sun Y, Yu XL, Luo W, Lee AW, Wee JT, Lee N, et al. Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy. Radiother Oncol. 2014;110(3):390–7.

    Article  PubMed  Google Scholar 

  13. Scoccianti S, Detti B, Gadda D, Greto D, Furfaro I, Meacci F, et al. Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for delineation in everyday practice. Radiother Oncol. 2015;114(2):230–8.

    Article  PubMed  Google Scholar 

  14. Gondi V, Tolakanahalli R, Mehta MP, Tewatia D, Rowley H, Kuo JS, et al. Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator–based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78(4):1244–52.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Smart D. Radiation toxicity in the central nervous system: mechanisms and strategies for injury reduction. Semin Radiat Oncol. 2017;27(4):332–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ahles TA, Root JC, Ryan EL. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol. 2012;30:3675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31:1341–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kramer S, Henrickson F, Zelen M. Therapeutic trials in the management of metastatic brain tumors by different time/dose fraction schemes of radiation therapy. Natl Cancer Inst Monogr. 1977;46:213–21.

    CAS  PubMed  Google Scholar 

  19. Kim JH, Brown SL, Jenrow KA, Ryu S. Mechanisms of radiation-induced brain toxicity and implications for future clinical trials. J Neuro-Oncol. 2008;87:279–86.

    Article  CAS  Google Scholar 

  20. Belka C, Budach W, Kortmann RD, Bamberg M. Radiation induced CNS toxicity--molecular and cellular mechanisms. Br J Cancer. 2001;85(9):1233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Phillips TL. An ultrastructural study of the development of radiation injury in the lung. Radiology. 1966;87:49–54.

    Article  CAS  PubMed  Google Scholar 

  22. Zollinger HU. Radiation vasculopathy. Pathol Eur. 1970;5:145–63.

    CAS  PubMed  Google Scholar 

  23. Song H, Steven CF, Gage FH. Astroglia induce neurogenesis from adult neuronal stem cells. Nature. 2002;417:39–44.

    Article  CAS  PubMed  Google Scholar 

  24. Seifert G, Schilling K, Steinhauser C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci. 2006;7:194–206.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou H, Liu Z, Liu J, Wang J, Zhou D, Zhao Z, Xiao S, Tao E, Suo WZ. Fractionated radiation-induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic findings. AJNR Am J Neuroradiol. 2011;32:1795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seth P, Koul N. Astrocyte, the star avatar: redefined. J Biosci. 2008;33:405–21.

    Article  PubMed  Google Scholar 

  27. Kyrkanides S, Olschowka JA, Williams JP, Hansen JT, O’Banion MK. TNF alpha and IL-1beta mediate intercellular adhesion molecule-1 induction via microglia-astrocyte interaction in CNS radiation injury. J Neuroimmunol. 1999;95:95–106.

    Article  CAS  PubMed  Google Scholar 

  28. Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: a review. Front Oncol. 2012;2:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol. 2010;86:132–44.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gangloff H, Haley TJ. Effects of X-irradiation on spontaneous and evoked brain electrical activity in cats. Radiat Res. 1960;12:694–704.

    Article  CAS  PubMed  Google Scholar 

  31. Bassant MH, Court L. Effects of whole-body irradiation on the activity of rabbit hippocampal neurons. Radiat Res. 1978;75:593–606.

    Article  CAS  PubMed  Google Scholar 

  32. Rosi S, Andres-Mach M, Fishman KM, Levy W, Ferguson RA, Fike JR. Cranial irradiation alters the behaviorally induced immediate-early gene arc (activity-regulated cytoskeleton associated protein). Cancer Res. 2008;68:9763–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Madsen TM, Kristjansen PE, Bolwig TG, et al. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience. 2003;119:635–42.

    Article  CAS  PubMed  Google Scholar 

  34. Fike JR, Rola R, Limoli CL. Radiation response of neural precursor cells. Neurosurg Clin N Am. 2007;18:115–27.

    Article  PubMed  Google Scholar 

  35. Tofilon PJ, Fike JR. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 2000;153:357–70.

    Article  CAS  PubMed  Google Scholar 

  36. Belka C, Rudner J, Wesselborg S, Stepczynska A, Marini P, Lepple-Wienhues A, Faltin H, Bamberg M, Budach W, Schulze-Osthoff K. Differential role of caspase-8 and BID activation during radiation-and CD95-induced apoptosis. Oncogene. 2000;19:1181–90.

    Article  CAS  PubMed  Google Scholar 

  37. Chong MJ, Murray MR, Gosink EC, Russell HR, Srinivasan A, Kapsetaki M, Korsmeyer SJ, McKinnon PJ. Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc Natl Acad Sci U S A. 2000;97:889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hallahan DE, Virudachalam S. Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation. Proc Natl Acad Sci U S A. 1997;94:6432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014;32(3):103–15.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sheline GE. Radiation therapy of brain tumors. Cancer. 1977;39(Supp2):873–81.

    Article  CAS  PubMed  Google Scholar 

  41. Sundgren PC, Cao Y. Brain irradiation: effects on normal brain parenchyma and radiation injury. Neuroimaging Clin N Am. 2009;19(4):657–68.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ljubimova NV, Levitman MK, Plotnikova ED, Eidus LK. Endothelial cell population dynamics in rat brain after local irradiation. Br J Radiol. 1991;64(766):934–40.

    Article  CAS  PubMed  Google Scholar 

  43. Reinhold HS, Calvo W, Hopewell JW, van der Berg AP. Development of blood vessel-related radiation damage in the fimbria of the central nervous system. Int J Radiat Oncol Biol Phys. 1990;18(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  44. Tallet AV, Azria D, Barlesi F. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol. 2012;7:77.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Haas-Kogan D, Indelicato D, Paganetti H, Esiashvili N, Mahajan A, Yock T, et al. National Cancer Institute workshop on proton therapy for children: considerations regarding brainstem injury. Int J Radiat Oncol Biol Phys. 2018;101(1):152–68.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rong X, Tang Y, Chen M, Lu K, Peng Y. Radiation-induced cranial neuropathy in patients with nasopharyngeal carcinoma. A follow-up study. Strahlenther Oncol. 2012;188(3):282–6.

    Article  CAS  Google Scholar 

  47. Fein DA, Marcus RB Jr, Parsons JT, Mendenhall WM, Million RR. Lhermitte’s sign: incidence and treatment variables influencing risk after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys. 1999;27:1027–33.

    Google Scholar 

  48. Wara WM, Phillips TL, Sheline GE, Schwade JG. Radiation tolerance of the spinal cord. Cancer. 1975;35:1558–62.

    Article  CAS  PubMed  Google Scholar 

  49. Gordon KB, Char DH, Sagerman RH. Late effects of radiation on the eye and ocular adnexa. Int J Radiat Oncol Biol Phys. 1995;31(5):1123–39.

    Article  CAS  PubMed  Google Scholar 

  50. Khan DZ, Lacasse MC, Khan R, Murphy KJ. Radiation cataractogenesis: the progression of our understanding and its clinical consequences. J Vasc Interv Radiol. 2017;28(3):412–9.

    Article  PubMed  Google Scholar 

  51. Worgul BV, Merriam GR, Medvedovsky C. Cortical cataract development: an expression of primary damage to the lens epithelium. Lens Eye Toxicity Res. 1989;6:559–71.

    CAS  Google Scholar 

  52. Palmer TD, Takahashi J, gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425:479–94.

    Article  CAS  PubMed  Google Scholar 

  53. Mizumastu S, Monje M, Morhardt R, et al. Extreme sensitivity of adult neurogenesis to low doses of x-irradiation. Cancer Res. 2003;63:4021–7.

    Google Scholar 

  54. Sun AM, Li CG, Han YQ, Liu QL, Xia Q, Yuan YW. X-ray irradiation promotes apoptosis of hippocampal neurons through up-regulation of Cdk5 and p25. Cancer Cell Int. 2013;13(1):47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Peissner W, Kocher M, Treuer H, Gillardon F. Ionizing radiation-induced apoptosis of proliferating stem cells in the dentate gyrus of the adult rat hippocampus. Brain Res Mol Brain Res. 1999;71:61–8.

    Article  CAS  PubMed  Google Scholar 

  56. Appelman-Dijkstra NM, Kokshoorn NE, Dekkers OM, Neelis KJ, Biermasz NR, Romijn JA, Smit JW, Pereira AM. Pituitary dysfunction in adult patients after cranial radiotherapy: systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(8):2330–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fernandez A, Brada M, Zabuliene L, Karavitaki N, Wass JA. Radiation-induced hypopituitarism. Endocr Relat Cancer. 2009;16(3):733–72.

    Article  CAS  PubMed  Google Scholar 

  58. Darzy KH, Shalet SM. Hypopituitarism following radiotherapy. Pituitary. 2009;12(1):40–50.

    Article  PubMed  Google Scholar 

  59. Rubin P, Cooper RA, Phillips TL. Radiation biology and radiation pathology syllabus. Set RT1: radiation oncology, vol. 2. Chicago: American College of Radiology; 1975. p. 2–7.

    Google Scholar 

  60. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.3.

    Article  CAS  PubMed  Google Scholar 

  61. Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, Ten Haken RK, Yorke ED. Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S3–9.4.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP. Radiation dose–volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3):S20–7.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lambrecht M, Eekers DBP, Alapetite C, Burnet NG, Calugaru V, Coremans IEM, European Particle Therapy Network of ESTRO, et al. Radiation dose constraints for organs at risk in neuro-oncology; the European Particle Therapy Network consensus. Radiother Oncol. 2018;128(1):26–36.

    Article  PubMed  Google Scholar 

  65. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47:291–8.

    Article  CAS  PubMed  Google Scholar 

  66. Mayo C, Yorke E, Merchant TE. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S36–41.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lee TF, Fang FM, Chao PJ, Su TJ, Wang LK, Leung SW. Dosimetric comparisons of helical tomotherapy and step-and-shoot intensity-modulated radiotherapy in nasopharyngeal carcinoma. Radiother Oncol. 2008;89(1):89–96.

    Article  PubMed  Google Scholar 

  68. Merchant TE, Chitti RM, Li C, Xiong X, Sanford RA, Khan RB. Factors associated with neurological recovery of brainstem function following postoperative conformal radiation therapy for infratentorial ependymoma. Int J Radiat Oncol Biol Phys. 2010;76:496–503.

    Article  PubMed  Google Scholar 

  69. Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose–volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3):S42–9.

    Article  PubMed  Google Scholar 

  70. Schultheiss TE, Kun LE, Ang KK, Stephens LC. Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys. 1995;31(5):1093–112.

    Article  CAS  PubMed  Google Scholar 

  71. Ryu S, Jin JY, Jin R, Rock J, Ajlouni M, Movsas B, et al. Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer. 2007;109:628–36.

    Article  PubMed  Google Scholar 

  72. Sahgal A, Ma L, Gibbs I, Gerszten PC, Ryu S, Soltys S, et al. Spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77:548–53.

    Article  PubMed  Google Scholar 

  73. Ryu S, Pugh SL, Gerszten PC, Yin FF, Timmerman RD, Hitchcock YJ, Movsas B, Kanner AA, Berk LB, Followill DS, Kachnic LA. RTOG 0631 phase II/III study of image-guided stereotactic radiosurgery for localized (1-3) spine metastases: phase II results. Int J Radiat Oncol Biol Phys. 2011;81(2):S131–2.

    Article  PubMed  Google Scholar 

  74. Jeganathan VSE, Wirth A, MacManus MP. Ocular risks from orbital and periorbital radiation therapy: a critical review. Int J Radiat Oncol. 2011;79:650–9.

    Article  Google Scholar 

  75. Kozelsky TF, Garrity JA, Kurtin PJ, Leavitt JA, Martenson JA, Habermann TM. Orbital lymphoma: radiotherapy outcome and complications. Radiother Oncol. 2001;59:139–44.

    Article  PubMed  Google Scholar 

  76. Parsons JT, Bova FJ, Mendenhall WM, Million RR, Fitzgerald CR. Response of the normal eye to high dose radiotherapy. Oncology (Williston Park). 1996;10:837–47.

    CAS  Google Scholar 

  77. Smith GT, Deutsch GP, Cree IA, Liu CS. Permanent corneal limbal stem cell dysfunction following radiotherapy for orbital lymphoma. Eye (Lond). 2000;14:905–7.

    Article  CAS  Google Scholar 

  78. Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, MacVittie TJ, et al. ICRP PUBLICATION 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41:1–322.

    Article  CAS  PubMed  Google Scholar 

  79. Forrest AP, Brown DAP, Morris SR, Illingsworth CF. Pituitary radon implant for advanced cancer. Lancet (London, England). 1956;270:399–401.

    Article  CAS  Google Scholar 

  80. Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation dose–volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys. 2010;76(3):S28–35.

    Article  PubMed  Google Scholar 

  81. Gondi V, Hermann BP, Mehta MP, Tomé WA. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys. 2013;85:348–54.

    Article  PubMed  Google Scholar 

  82. Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, Rowley H, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32:3810–6.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marek J, Jezková J, Hána V, Krsek M, Bandúrová L, Pecen L, Vladyka V, Liscák R. Is it possible to avoid hypopituitarism after irradiation of pituitary adenomas by the Leksell gamma knife? Eur J Endocrinol. 2011;164:169–78.

    Article  CAS  PubMed  Google Scholar 

  84. Powell C, Guerrero D, Sardell S, Cumins S, Wharram B, Traish D, Gonsalves A, Ashley S, Brada M. Somnolence syndrome in patients receiving radical radiotherapy for primary brain tumours: a prospective study. Radiother Oncol. 2011;100(1):131–6.

    Article  PubMed  Google Scholar 

  85. Faithfull S, Brada M. Somnolence syndrome in adults following cranial irradiation for primary brain tumours. Clin Oncol (R Coll Radiol). 1998;10:250–4.

    Article  CAS  Google Scholar 

  86. Minton O, Richardson A, Sharpe M, Hotopf M, Stone P. A systematic review and meta-analysis of the pharmacological treatment of cancer-related fatigue. J Natl Cancer Inst. 2008;100:1155–66.

    Article  CAS  PubMed  Google Scholar 

  87. Butler JM Jr, Case LD, Atkins J, Frizzell B, Sanders G, Griffin P, Lesser G, et al. A phase III, double-blind, placebo-controlled prospective randomized clinical trial of d-threo-methylphenidate HCl in brain tumor patients receiving radiation therapy. Int J Radiat Oncol Biol Phys. 2007;69(5):1496–501.

    Article  CAS  PubMed  Google Scholar 

  88. Breitbart W, Alici Y. Psychostimulants for cancer-related fatigue. J Natl Compr Cancer Netw. 2010;8(8):933–42.

    Article  Google Scholar 

  89. Shaw EG, Robbins ME. The management of radiation-induced brain injury. Cancer Treat Res. 2006;128:7–22.

    Article  PubMed  Google Scholar 

  90. Lawenda BD, Gagne HM, Gierga DP, Niemierko A, Wong WM, Tarbell NJ, Chen GT, Hochberg FH, Loeffler JS. Permanent alopecia after cranial irradiation: dose-response relationship. Int J Radiat Oncol Biol Phys. 2004;60(3):879.

    Article  PubMed  Google Scholar 

  91. Wei J, Meng L, Xue H, Chao Q, Wang B, Xin Y, Jiang X. Radiation-induced skin reactions: mechanism and treatment. Cancer Manag Res. 2019;11:167–77.

    Article  CAS  PubMed  Google Scholar 

  92. Winter SF, Loebel F, Loeffler J, Batchelor TT, Martinez-Lage M, Vajkoczy P, Dietrich J. Treatment-induced brain tissue necrosis: a clinical challenge in neuro-oncology. Neuro-Oncology. 2019;21:1118.

    PubMed  PubMed Central  Google Scholar 

  93. Lubelski D, Abdullah KG, Weil RJ, Marko NF. Bevacizumab for radiation necrosis following treatment of high grade glioma: a systematic review of the literature. J Neuro-Oncol. 2013;115(3):317–22.

    Article  CAS  Google Scholar 

  94. Tye K, Engelhard HH, Slavin KV, et al. An analysis of radiation necrosis of the central nervous system treated with bevacizumab. J Neuro-Oncol. 2014;117(2):321–7.

    Article  CAS  Google Scholar 

  95. Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994;44(11):2020.

    Article  CAS  PubMed  Google Scholar 

  96. Chuba PJ, Aronin P, Bhambhani K, Eichenhorn M, Zamarano L, Cianci P, Muhlbauer M, Porter AT, Fontanesi J. Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer. 1997;80(10):2005.

    Article  CAS  PubMed  Google Scholar 

  97. Wilke C, Grosshans D, Duman J, Brown P, Li J. Radiation-induced cognitive toxicity: pathophysiology and interventions to reduce toxicity in adults. Neuro-Oncology. 2018;20(5):597–607.

    Article  CAS  PubMed  Google Scholar 

  98. Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, Arbuckle RB, Swint JM, Shiu AS, Maor MH, Meyers CA. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10(11):1037–44.

    Article  PubMed  Google Scholar 

  99. Li J, Bentzen SM, Renschler M, Mehta MP. Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function. J Clin Oncol. 2007;25(10):1260–6.

    Article  PubMed  Google Scholar 

  100. Meyers CA, Smith JA, Bezjak A, Mehta MP, Liebmann J, Illidge T, et al. Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J Clin Oncol. 2004;22(1):157–65.

    Article  CAS  PubMed  Google Scholar 

  101. Rock JP, Ryu S, Yin FF, Schreiber F, Abdulhak M. The evolving role of stereotactic radiosurgery and stereotactic radiation therapy for patients with spine tumors. J Neuro-Oncol. 2004;69(1–3):319–34.

    Article  Google Scholar 

  102. Fein DA, Marcus RB Jr, Parsons JT, Mendenhall WM, Million RR. Lhermitte’s sign: incidence and treatment variables influencing risk after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys. 1993;27(5):1029.

    Article  CAS  PubMed  Google Scholar 

  103. Leung WM, Tsang NM, Chang FT, Lo CJ. Lhermitte’s sign among nasopharyngeal cancer patients after radiotherapy. Head Neck. 2007;27(3):187.

    Article  Google Scholar 

  104. Jiang J, Li Y, Shen Q, Rong X, Huang X, Li H, Zhou L, Mai HQ, et al. Effect of pregabalin on radiotherapy-related neuropathic pain in patients with head and neck cancer: a randomized controlled trial. J Clin Oncol. 2019;37(2):135–43.

    Article  CAS  PubMed  Google Scholar 

  105. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, Grewal J, Prabhu S, Loghin M, Gilbert MR, Jackson EF. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Andratschke NH, Nieder C, Price RE, Rivera B, Ang KK. Potential role of growth factors in diminishing radiation therapy neural tissue injury. Semin Oncol. 2005;32(2 Suppl 3):S67.

    Article  CAS  PubMed  Google Scholar 

  107. Esik O, Vönöczky K, Lengyel Z, Sáfrány G, Trón L. Characteristics of radiogenic lower motor neurone disease, a possible link with a preceding viral infection. Spinal Cord. 2004;42(2):99–105.

    Article  CAS  PubMed  Google Scholar 

  108. Allen JC, Miller DC, Budzilovich GN, Epstein FJ. Brain and spinal cord hemorrhage in long-term survivors of malignant pediatric brain tumors: a possible late effect of therapy. Neurology. 1991;41(1):148.

    Article  CAS  PubMed  Google Scholar 

  109. Jabbour P, Gault J, Murk SE, Awad IA. Multiple spinal cavernous malformations with atypical phenotype after prior irradiation: case report. Neurosurgery. 2004;55(6):1431.

    Article  PubMed  Google Scholar 

  110. Moore J, de Silva SR, O'Hare K, Humphry RC. Ruby laser for the treatment of trichiasis. Lasers Med Sci. 2009;24:137–9.

    Article  PubMed  Google Scholar 

  111. Tseng SC. Topical tretinoin treatment for severe dry-eye disorders. J Am Acad Dermatol. 1986;15:860–6.

    Article  CAS  PubMed  Google Scholar 

  112. Doughty MJ, Glavin S. Efficacy of different dry eye treatments with artificial tears or ocular lubricants: a systematic review. Ophthalmic Physiol Opt. 2009;29:573–83.

    Article  PubMed  Google Scholar 

  113. Shtein RM, Shen JF, Kuo AN, Hammersmith KM, Li JY, Weikert MP. Autologous serum-based eye drops for treatment of ocular surface disease: a report by the American Academy of ophthalmology. Ophthalmology. 2019. https://doi.org/10.1016/j.ophtha.2019.08.018.

  114. Durkin SR, Roos D, Higgs B, Casson RJ, Selva D. Ophthalmic and adnexal complications of radiotherapy. Acta Ophthalmol Scand. 2007;85(3):240–50.

    Article  PubMed  Google Scholar 

  115. Merriam GRSA, Focht EF. The effects of ionizing radiations on the eye. Radiat Ther Oncol. 1972;6:346–85.

    Article  Google Scholar 

  116. Belkacemi Y, Ozsahin M, Pène F, Rio B, Laporte JP, Leblond V, Touboul E, Schlienger M, Gorin NC, Laugier A. Cataractogenesis after total body irradiation. Int J Radiat Oncol Biol Phys. 1996;35:53–60.

    Article  CAS  PubMed  Google Scholar 

  117. Gall N, Leiba H, Handzel R, Pe'er J. Severe radiation retinopathy and optic neuropathy after brachytherapy for choroidal melanoma, treated by hyperbaric oxygen. Eye (Lond). 2007;21:1010–2.

    Article  CAS  Google Scholar 

  118. Wen JC, McCannel TA. Treatment of radiation retinopathy following plaque brachytherapy for choroidal melanoma. Curr Opin Ophthalmol. 2009;20:200–4.

    Article  PubMed  Google Scholar 

  119. Forrest AW. Tumors following radiation about the eye. Trans Am Acad Ophthalmol Otolaryngol. 1961;65:694–717.

    CAS  PubMed  Google Scholar 

  120. Mehta MP, Rodrigus P, Terhaard CH, Rao A, Suh J, Roa W, Souhami L, et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J Clin Oncol. 2003;21:2529.

    Article  CAS  PubMed  Google Scholar 

  121. Rooney JW, Laack NN. Pharmacological interventions to treat or prevent neurocognitive decline after brain radiation. CNS Oncol. 2013;2(6):531–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Orrego F, Villanueva S. The chemical nature of the main central excitatory transmitter: a critical appraisal based upon release studies and synaptic vesicle localization. Neuroscience. 1993;56:539–55.

    Article  CAS  PubMed  Google Scholar 

  123. Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I, Memantine Study Group. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004;291(3):317–24.

    Article  CAS  PubMed  Google Scholar 

  124. Wilcock G, Möbius HJ, Stöffler A, MMM 500 Group. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17(6):297–305.

    Article  CAS  PubMed  Google Scholar 

  125. Brown PD, Pugh S, Laack NN, Wefel JS, Khuntia D, Meyers C, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology. 2013;15(10):1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Malouf R, Birks J. Donepezil for vascular cognitive impairment. Cochrane Database Syst Rev. 2004;1:CD004395.

    Google Scholar 

  127. Shaw EG, Rosdhal R, D'Agostino RB Jr, Rosdhal R, D'Agostino RB Jr, Lovato J, Naughton MJ, Robbins ME, Rapp SR. Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol. 2006;24:1415.

    Article  CAS  PubMed  Google Scholar 

  128. Rapp SR, Case LD, Peiffer A, Naughton MM, Chan MD, Stieber VW. Donepezil for irradiated brain tumor survivors: a phase III randomized placebo-controlled clinical trial. J Clin Oncol. 2015;33(15):1653–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sklar CA, Antal Z, Chemaitilly W, Cohen LE, Follin C, Meacham LR, Murad MH. Hypothalamic-pituitary and growth disorders in survivors of childhood cancer: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(8):2761.

    Article  PubMed  Google Scholar 

  130. Palmert MR, Dunkel L. Clinical practice. Delayed puberty. N Engl J Med. 2012;366(5):443–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gozde Yazici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yavas, G., Yazici, G. (2020). Toxicity Management for Central Nervous System Tumors in Radiation Oncology. In: Ozyigit, G., Selek, U. (eds) Prevention and Management of Acute and Late Toxicities in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-37798-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37798-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37797-7

  • Online ISBN: 978-3-030-37798-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics