Skip to main content

Matter in Motion: The Scientific Image of the World

  • Chapter
  • First Online:

Abstract

This chapter elaborates on what the ontological commitments of science are and what they are not. It focuses on the fundamental and universal theories of physics from Newtonian mechanics to today’s quantum physics. The chapter answers the following question: Which ontological commitments are minimally sufficient to understand our scientific knowledge? The purpose of this chapter is to work out the philosophical points that are necessary in order to grasp why science does not come into conflict with our freedom. It shows why the ontology of science is not rich enough for such a conflict to arise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Cf. Bell (2004, p. 175).

  2. 2.

    See also Maudlin (2019, pp. 49–50).

  3. 3.

    Cf. Hacking (1975) and Belot (2001).

  4. 4.

    See notably Ladyman (1998), French and Ladyman (2003), Esfeld (2014b), Esfeld and Lam (2008) and French (2014).

  5. 5.

    See Descartes, Principles of philosophy, in particular part 1, § 53.

  6. 6.

    See Leibniz, third letter to Newton-Clarke, § 5, in Leibniz (1890, pp. 363–364); English translation Leibniz (2000).

  7. 7.

    See Leibniz, third letter to Newton-Clarke, § 4, fourth letter, § 41, fifth letter, §§ 29, 47, 104, in Leibniz (1890, pp. 363, 376–377, 395–396, 400–402, 415).

  8. 8.

    Lazarovici (2018b) is right in laying stress on this issue.

  9. 9.

    See Barbour (2012) and Mercati (2018) for an overview.

  10. 10.

    See Barbour and Bertotti (1982), Barbour (2003) and Mercati (2018, part II).

  11. 11.

    For an excellent discussion of these issues, see Lange (2002, ch. 1).

  12. 12.

    Quoted from Laplace (1951, p. 4); original publication 1814.

  13. 13.

    See e.g. Popper (1950a, b) and Breuer (1995).

  14. 14.

    See Lazarovici and Reichert (2015) for a detailed presentation .

  15. 15.

    See Lazarovici (2018a) for details.

  16. 16.

    See Rovelli (1997) for such a view.

  17. 17.

    See again Lazarovici (2018a) for an elaboration on these arguments.

  18. 18.

    For an assessment of the philosophical consequences, see, over and above Lazarovici (2018a), also Hartenstein and Hubert (2019).

  19. 19.

    For an excellent exposition, see Maudlin (2012, chs. 4–5).

  20. 20.

    There is no reason to admit fundamentally source-free fields in electrodynamics, although for practical purposes, one calculates with external fields without considering their sources. As mentioned in the previous section, fields in classical electrodynamics are in the end not independent degrees of freedom. See again Deckert and Hartenstein (2016) as well as Hartenstein and Hubert (2019).

  21. 21.

    See Gomes et al. (2011), Gomes and Koslowski (2013), Mercati (2018, ch. 7). See furthermore Gryb and Thébault (2016, in particular pp. 692–697) for a philosophical discussion .

  22. 22.

    See Maudlin (1995) for a precise formulation of the measurement problem.

  23. 23.

    See Wallace (2008) for a general overview.

  24. 24.

    See Dürr et al. (2013). See Goldstein (2017) for an overview , Bricmont (2016) for a recent elaborate defense and Dürr and Teufel (2009) for a textbook presentation.

  25. 25.

    See also Loewer (1996).

  26. 26.

    See Dürr et al. (2013, ch. 2) for details.

  27. 27.

    See already Gisin (1984) for a forerunner.

  28. 28.

    See e.g. Cowan and Tumulka (2016).

  29. 29.

    See Maudlin (2011, p. 258 and 2019, pp. 113–115) for this objection.

  30. 30.

    See e.g. Maudlin (2010, pp. 135–138 and 2019, pp. 117–121) for this objection. See Esfeld (2014a) for a detailed assessment of these proposals.

  31. 31.

    See again Esfeld (2014a) for a detailed argument.

  32. 32.

    See Lazarovici et al. (2018).

  33. 33.

    See Bell (2004, notably chs. 2, 7, and 24). See Goldstein et al. (2011) for an excellent didactic overview and Maudlin (2011) for a discussion of the consequences of this theorem.

  34. 34.

    See Esfeld (2015).

  35. 35.

    Furthermore, see Chen (2019) for a proposal how to integrate thermodynamics and the past hypothesis in quantum physics.

  36. 36.

    See Dürr et al. (2013, chs. 2 and 5).

  37. 37.

    English translation in Howard (1985, pp. 187–188).

  38. 38.

    See Barrett (2014) and Esfeld and Gisin (2014).

  39. 39.

    See Dürr et al. (2018) for a detailed treatment. See furthermore Vassallo (2015), Vassallo and Ip (2016) and Koslowski (2017).

  40. 40.

    See Barrett (2014) for the measurement problem in quantum field theory.

  41. 41.

    See Esfeld and Deckert (2017, ch. 4) for the details how to do this. See also already Colin and Struyve (2007).

  42. 42.

    Cf. also the quotation from Feynman in Sect. 1.1.

References

  • Albert, David Z. (2000): Time and chance. Cambridge (Massachusetts): Harvard University Press.

    Google Scholar 

  • Albert, David Z. (2015): After physics. Cambridge (Massachusetts): Harvard University Press.

    Book  Google Scholar 

  • Allori, Valia, Goldstein, Sheldon, Tumulka, Roderich and Zanghì, Nino (2014): “Predictions and primitive ontology in quantum foundations: a study of examples”. British Journal for the Philosophy of Science 65, pp. 323–352.

    Article  Google Scholar 

  • Barbour, Julian B. (2003): “Scale-invariant gravity: particle dynamics”. Classical and Quantum Gravity 20, pp. 1543–1570.

    Article  Google Scholar 

  • Barbour, Julian B. (2012): “Shape dynamics. An introduction”. In: F. Finster, O. Mueller, M. Nardmann, J. Tolksdorf and E. Zeidler (eds.): Quantum field theory and gravity. Basel: Birkhaeuser, pp. 257–297.

    Chapter  Google Scholar 

  • Barbour, Julian B. and Bertotti, Bruno (1982): “Mach’s principle and the structure of dynamical theories”. Proceedings of the Royal Society A 382, pp. 295–306.

    Article  Google Scholar 

  • Barrett, Jeffrey A. (2014): “Entanglement and disentanglement in relativistic quantum mechanics”. Studies in History and Philosophy of Modern Physics 47, pp. 168–174.

    Article  Google Scholar 

  • Bell, John S. (2004): Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press. Second edition. First edition 1987.

    Book  Google Scholar 

  • Belot, Gordon (2001): “The principle of sufficient reason”. Journal of Philosophy 98, pp. 55–74.

    Article  Google Scholar 

  • Bohm, David (1952): “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I and II”. Physical Review 85, pp. 166–179, 180–193.

    Article  Google Scholar 

  • Boltzmann, Ludwig (1896/98): Vorlesungen über Gastheorie. Teil 1 und 2. Leipzig: Barth.

    Google Scholar 

  • Boltzmann, Ludwig (1897): “Zu Hrn. Zermelo’s Abhandlung über die mechanische Erklärung irreversibler Vorgänge”. Annalen der Physik 60, pp. 392–398. English translation “On Zermelo’s paper ‘On the mechanical explanation of irreversible processes’” in S. G. Brush (1966): Kinetic theory. Volume 2. Irreversible processes. Oxford: Pergamon Press, pp. 238–245.

    Article  Google Scholar 

  • Breuer, Thomas (1995): “The impossibility of exact state self-measurements”. Philosophy of Science 62, pp. 197–214.

    Article  Google Scholar 

  • Bricmont, Jean (2016): Making sense of quantum mechanics. Cham: Springer.

    Book  Google Scholar 

  • Carnap, Rudolf (1928): Scheinprobleme in der Philosophie. Das Fremdpsychische und der Realismusstreit. Berlin-Schlachtensee: Weltkreis Verlag.

    Google Scholar 

  • Chen, Eddy Keming (2019): “Quantum mechanics in a time-asymmetric universe: on the nature of the initial quantum state”. Forthcoming in the British Journal for the Philosophy of Science. Preprint http://arxiv.org/abs/1712.01666 [quant-ph]

  • Colin, Samuel and Struyve, Ward (2007): “A Dirac sea pilot-wave model for quantum field theory”. Journal of Physics A 40, pp. 7309–7341.

    Article  Google Scholar 

  • Cowan, Charles Wesley and Tumulka, Roderich (2016): “Epistemology of wave function collapse in quantum physics”. British Journal for the Philosophy of Science 67, pp. 405–434.

    Article  Google Scholar 

  • de Broglie, Louis (1928): “La nouvelle dynamique des quanta”. In: Electrons et photons. Rapports et discussions du cinquième Conseil de physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspices de l’Institut international de physique Solvay. Paris: Gauthier-Villars, pp. 105–132. English translation in G. Bacciagaluppi and A. Valentini (2009): Quantum theory at the crossroads. Reconsidering the 1927 Solvay conference. Cambridge: Cambridge University Press, pp. 341–371.

    Google Scholar 

  • Deckert, Dirk-André and Hartenstein, Vera (2016): “On the initial value formulation of classical electrodynamics”. Journal of Physics A 49, pp. 445202–445221.

    Article  Google Scholar 

  • Dürr, Detlef, Goldstein, Sheldon and Zanghì, Nino (2013): Quantum physics without quantum philosophy. Berlin: Springer.

    Google Scholar 

  • Dürr, Detlef, Goldstein, Sheldon and Zanghì, Nino (2018): “Quantum motion on shape space and the gauge dependent emergence of dynamics and probability in absolute space and time”. http://arxiv.org/abs/1808.06844 [quant-ph]

  • Dürr, Detlef and Teufel, Stefan (2009): Bohmian mechanics. The physics and mathematics of quantum theory. Berlin: Springer.

    Google Scholar 

  • Einstein, Albert (1948): “Quanten–Mechanik und Wirklichkeit”. Dialectica 2, pp. 320–324.

    Article  Google Scholar 

  • Esfeld, Michael (2014a): “The primitive ontology of quantum physics: guidelines for an assessment of the proposals”. Studies in History and Philosophy of Modern Physics 47, pp. 99–106.

    Article  Google Scholar 

  • Esfeld, Michael (2014b): “Quantum Humeanism”. Philosophical Quarterly 64, pp. 453–470.

    Article  Google Scholar 

  • Esfeld, Michael (2015): “Bell’s theorem and the issue of determinism and indeterminism”. Foundations of Physics 45, pp. 471–482.

    Article  Google Scholar 

  • Esfeld, Michael and Deckert, Dirk-André (2017): A minimalist ontology of the natural world. New York: Routledge.

    Book  Google Scholar 

  • Esfeld, Michael and Gisin, Nicolas (2014): “The GRW flash theory: a relativistic quantum ontology of matter in space-time?”. Philosophy of Science 81, pp. 248–264.

    Article  Google Scholar 

  • Esfeld, Michael and Lam, Vincent (2008): “Moderate structural realism about space-time”. Synthese 160, pp. 27–46.

    Article  Google Scholar 

  • Everett, Hugh (1957): “‘Relative state’ formulation of quantum mechanics”. Reviews of Modern Physics 29, pp. 454–462.

    Article  Google Scholar 

  • Feynman, Richard P. (1966): “The development of the space-time view of quantum electrodynamics. Nobel Lecture, December 11, 1965”. Science 153, pp. 699–708.

    Article  Google Scholar 

  • Feynman, Richard P., Leighton, Robert B. and Sands, Matthew (1963): The Feynman lectures on physics. Volume 1. Reading (Massachusetts): Addison-Wesley.

    Google Scholar 

  • Field, Hartry H. (1980): Science without numbers. A defence of nominalism. Oxford: Blackwell.

    Google Scholar 

  • French, Steven (2014): The structure of the world. Metaphysics and representation. Oxford: Oxford University Press.

    Book  Google Scholar 

  • French, Steven and Ladyman, James (2003): “Remodelling structural realism: quantum physics and the metaphysics of structure”. Synthese 136, pp. 31–56.

    Article  Google Scholar 

  • Geach, Peter (1965): “Some problems about time”. Proceedings of the British Academy 51, pp. 321–336.

    Google Scholar 

  • Ghirardi, Gian Carlo, Grassi, Renata and Benatti, Fabio (1995): “Describing the macroscopic world: closing the circle within the dynamical reduction program”. Foundations of Physics 25, pp. 5–38.

    Article  Google Scholar 

  • Ghirardi, Gian Carlo, Rimini, Alberto and Weber, Tullio (1986): “Unified dynamics for microscopic and macroscopic systems”. Physical Review D 34, pp. 470–491.

    Article  Google Scholar 

  • Gisin, Nicolas (1984): “Quantum measurements and stochastic processes”. Physical Review Letters 52, pp. 1657–1660.

    Article  Google Scholar 

  • Goldstein, Sheldon (2017): “Bohmian mechanics”. In: E. N. Zalta (ed.): The Stanford Encyclopedia of Philosophy (Summer 2017 edition). https://plato.stanford.edu/archives/sum2017/entries/qm-bohm/

  • Goldstein, Sheldon, Norsen, Travis, Tausk, Daniel Victor and Zanghì, Nino (2011): “Bell’s theorem”. http://www.scholarpedia.org/article/Bell’s_theorem

  • Gomes, Henrique, Gryb, Sean and Koslowski, Tim (2011): “Einstein gravity as a 3d conformally invariant theory”. Classical and Quantum Gravity 28, p. 045005.

    Article  Google Scholar 

  • Gomes, Henrique and Koslowski, Tim (2013): “Frequently asked questions about shape dynamics”. Foundations of Physics 43, pp. 1428–1458.

    Article  Google Scholar 

  • Graham, Daniel W. (2010): The texts of early Greek philosophy. The complete fragments and selected testimonies of the major Presocratics. Edited and translated by Daniel W. Graham. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gryb, Sean and Thébault, Karim P. Y. (2016): “Time remains”. British Journal for the Philosophy of Science 67, pp. 663–705.

    Article  Google Scholar 

  • Hacking, Ian (1975): “The identity of indiscernibles”. Journal of Philosophy 72, pp. 249–256.

    Article  Google Scholar 

  • Hartenstein, Vera and Hubert, Mario (2019): “When fields are not degrees of freedom”. Forthcoming in the British Journal for the Philosophy of Science. Preprint http://philsci-archive.pitt.edu/14911/

  • Howard, Don (1985): “Einstein on locality and separability”. Studies in History and Philosophy of Science 16, pp. 171–201.

    Article  Google Scholar 

  • Koslowski, Tim (2017): “Quantum inflation of classical shapes”. Foundations of Physics 47, pp. 625–639.

    Article  Google Scholar 

  • Ladyman, James (1998): “What is structural realism?”. Studies in History and Philosophy of Modern Science 29, pp. 409–424.

    Article  Google Scholar 

  • Lange, Marc (2002): An introduction to the philosophy of physics: locality, fields, energy and mass. Oxford: Blackwell.

    Google Scholar 

  • Laplace, Pierre Simon (1951): A philosophical essay on probabilities. Translated by F. W. Truscott and F. L. Emory. New York: Dover.

    Google Scholar 

  • Lazarovici, Dustin (2018a): “Against fields”. European Journal for the Philosophy of Science 8, pp. 145–170.

    Article  Google Scholar 

  • Lazarovici, Dustin (2018b): “Super-Humeanism: a starving ontology”. Studies in History and Philosophy of Modern Physics 64, pp. 79–86.

    Article  Google Scholar 

  • Lazarovici, Dustin, Oldofredi, Andrea and Esfeld, Michael (2018): “Observables and unobservables in quantum mechanics: How the no-hidden-variables theorems support the Bohmian particle ontology”. Entropy 20, pp. 381–397.

    Article  Google Scholar 

  • Lazarovici, Dustin and Reichert, Paula (2015): “Typicality, irreversibility and the status of macroscopic laws”. Erkenntnis 80, pp. 689–716.

    Article  Google Scholar 

  • Leibniz, Gottfried Wilhelm (1890): Die philosophischen Schriften von G. W. Leibniz. Band 7. Edited by C. I. Gerhardt. Berlin: Weidmannsche Verlagsbuchhandlung.

    Google Scholar 

  • Leibniz, Gottfried Wilhelm (2000): G. W. Leibniz and S. Clarke: Correspondence. Edited by Roger Ariew. Indianapolis: Hackett.

    Google Scholar 

  • Lewis, David (1986a): On the plurality of worlds. Oxford: Blackwell.

    Google Scholar 

  • Loewer, Barry (1996): “Freedom from physics: quantum mechanics and free will”. Philosophical Topics 24, pp. 91–112.

    Article  Google Scholar 

  • Loewer, Barry (2012): “Two accounts of law and time”. Philosophical Studies 160, pp. 115–137.

    Article  Google Scholar 

  • Mach, Ernst (1919): The science of mechanics: a critical and historical account of its development. Fourth edition. Translation by Thomas J. McCormack. Chicago: Open Court.

    Google Scholar 

  • Maudlin, Tim (1995): “Three measurement problems”. Topoi 14, pp. 7–15.

    Article  Google Scholar 

  • Maudlin, Tim (2002): “Remarks on the passing of time”. Proceedings of the Aristotelian Society 102, pp. 237–252.

    Article  Google Scholar 

  • Maudlin, Tim (2010): “Can the world be only wavefunction?”. In: S. Saunders, J. Barrett, A. Kent and D. Wallace (eds.): Many worlds? Everett, quantum theory, and reality. Oxford: Oxford University Press, pp. 121–143.

    Chapter  Google Scholar 

  • Maudlin, Tim (2011): Quantum non-locality and relativity. Chichester: Wiley-Blackwell. Third edition. First edition 1994.

    Google Scholar 

  • Maudlin, Tim (2012): Philosophy of physics. Space and time. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Maudlin, Tim (2019): Philosophy of physics. Quantum theory. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Mercati, Flavio (2018): Shape dynamics: relativity and relationalism. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Newton, Isaac (1934): Sir Isaac Newton’s mathematical principles of natural philosophy and his system of the world. Translated by Andrew Motte in 1729, revised by Florian Cajori. Volume 1: The motion of bodies. Berkeley: University of California Press.

    Google Scholar 

  • Newton, Isaac (1952): Opticks or a treatise of the reflections, refractions, inflections and colours of light. Edited by I. B. Cohen. New York: Dover.

    Google Scholar 

  • Newton, Isaac (1961): Correspondence. Volume II. Edited by H. W. Turnbull. Cambridge: Cambridge University Press.

    Google Scholar 

  • Popper, Karl (1950a): “Indeterminism in quantum physics and in classical physics. Part I”. British Journal for the Philosophy of Science 1, pp. 117–133.

    Article  Google Scholar 

  • Popper, Karl (1950b): “Indeterminism in quantum physics and in classical physics. Part II”. British Journal for the Philosophy of Science 1, pp. 173–195.

    Article  Google Scholar 

  • Rovelli, Carlo (1997): “Halfway through the woods: contemporary research on space and time”. In: J. Earman and J. Norton (eds.): The cosmos of science. Pittsburgh: University of Pittsburgh Press, pp. 180–223.

    Google Scholar 

  • Russell, Bertrand (1912): “On the notion of cause”. Proceedings of the Aristotelian Society 13, pp. 1–26.

    Article  Google Scholar 

  • Tumulka, Roderich (2006): “A relativistic version of the Ghirardi-Rimini-Weber model”. Journal of Statistical Physics 125, pp. 825–844.

    Article  Google Scholar 

  • Vassallo, Antonio (2015): “Can Bohmian mechanics be made background independent?”. Studies in History and Philosophy of Science 52, pp. 242–250.

    Article  Google Scholar 

  • Vassallo, Antonio and Ip, Pui Him (2016): “On the conceptual issues surrounding the notion of relational Bohmian dynamics”. Foundations of Physics 46, pp. 943–972.

    Article  Google Scholar 

  • Wallace, David (2008): “Philosophy of quantum mechanics”. In: D. Rickles (ed.): The Ashgate companion to contemporary philosophy of physics. Aldershot: Ashgate, pp. 16–98.

    Google Scholar 

  • Wallace, David (2012): The emergent multiverse. Quantum theory according to the Everett interpretation. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Weyl, Hermann (1949): Philosophy of mathematics and natural science. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Wheeler, John A. and Feynman, Richard P. (1945): “Interaction with the absorber as the mechanism of radiation”. Reviews of Modern Physics 17, pp. 157–181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Esfeld .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Esfeld, M. (2020). Matter in Motion: The Scientific Image of the World. In: Science and Human Freedom. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-37771-7_1

Download citation

Publish with us

Policies and ethics