Skip to main content

Development of New Lagrangian Computational Methods for Ice-Ship Interaction Problems: NICESHIP Project

  • Chapter
  • First Online:
Computation and Big Data for Transport

Abstract

This document presents the activities carried out to date (04/2019) in the project ‘Development of new Lagrangian computational methods for ice-ship interaction problems’ (NICE-SHIP). The NICE-SHIP project aims at developing a new generation of computational methods, based on the integration of innovative Lagrangian particle-based and finite element procedures for the analysis of the operation of a vessel in an iced sea, taking into account the different possible conditions of the ice. It is expected that the computational analysis techniques to be developed in NICE-SHIP will allow ice-class vessel designers to accurately evaluate the loads acting on the structure of a ship navigating in iced-seas and, in particular, to determine the ice resistance of the ship in different ice conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    see http://www.cimne.com/dempack/.

References

  1. ITTC-Recommended Procedures and Guidelines (2002). www.ittc.info

  2. Celigueta MA, Latorre S, Arrufat F, Onate E (2017) Accurate modelling of the elastic behavior of a continuum with the discrete element method. Comput Mech 60(6):997–1010

    Article  MathSciNet  Google Scholar 

  3. Celledoni E, Kometa BK, Verdier O (2016) High order semi-Lagrangian methods for the incompressible Navier-Stokes equations. J Sci Comput 66(1):91–115

    Article  MathSciNet  Google Scholar 

  4. Cho SR, Lee S (2015) A prediction method of ice breaking resistance using a multiple regression analysis. Int J Nav Archit Ocean Eng 7(4):708–719

    Article  Google Scholar 

  5. Cho SR, Jeong SY, Lee S (2013) Development of effective model test in pack ice conditions of square-type ice model basin. Ocean Eng 67:35–44

    Article  Google Scholar 

  6. Cho S-R, Jeong S-Y, Lee S, Kang, K-J (2014) Development of a prediction formula for ship resistance in level ice. In: ASME 2014 33rd international conference on ocean, offshore and Arctic engineering. American Society of Mechanical Engineers, pp V010T07A024–V010T07A024

    Google Scholar 

  7. Corlett ECB, Snaith GR (1964) Some aspects of icebreaker design. Trans R Inst Nav Archit 106(4):389–413

    Google Scholar 

  8. Cundall PA (1971) A computer model for simulating progressive, large-scale movement in blocky rock system. In: Proceedings of the international symposium on rock mechanics, 1971

    Google Scholar 

  9. Di S, Xue Y, Wang Q, Bai X (2017) Discrete element simulation of ice loads on narrow conical structures. Ocean Eng 146:282–297

    Article  Google Scholar 

  10. Garcia-Espinosa J, Camas BS, Cobb JC, Onate E, Latorre, S, Celigueta, MA (2018) Advances in the simulation of ship navigation in ice

    Google Scholar 

  11. Garcia-Espinosa J, Valls A, Onate E (2008) ODDLS: a new unstructured mesh finite element method for the analysis of free surface flow problems. Int J Numer Methods Eng 76(9):1297–1327

    Article  MathSciNet  Google Scholar 

  12. Hu J, Zhou L (2015) Experimental and numerical study on ice resistance for icebreaking vessels. Int J Nav Archit Ocean Eng 7(3):626–639

    Article  Google Scholar 

  13. Idelsohn SR, Onate E, Pin FD (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989

    Article  MathSciNet  Google Scholar 

  14. Idelsohn S, Nigro N, Limache A, Onate E (2012) Large time-step explicit integration method for solving problems with dominant convection. Comput Methods Appl Mech Eng 217:168–185

    Article  MathSciNet  Google Scholar 

  15. Idelsohn SR, Marti J, Becker P, Onate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Methods Fluids 75(9):621–644

    Article  MathSciNet  Google Scholar 

  16. Idelsohn S, Oñate E, Nigro N, Becker P, Gimenez J (2015) Lagrangian versus Eulerian integration errors. Comput Methods Appl Mech Eng 293:191–206

    Article  MathSciNet  Google Scholar 

  17. Ji S, Di S, Liu S (2015) Analysis of ice load on conical structure with discrete element method. Eng Comput 32(4):1121–1134

    Article  Google Scholar 

  18. Kashteljan VI, Poznjak II, Ryblin, AJ (1968) Ice resistance to motion of a ship

    Google Scholar 

  19. Kim MC, Lee SK, Lee WJ, Wang JY (2013) Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions. Int J Nav Archit Ocean Eng 5(1):116–131

    Article  Google Scholar 

  20. Lewis JW, Edwards Jr RY (1970) Methods for predicting icebreaking and ice resistance characteristics of icebreakers

    Google Scholar 

  21. Lu W, Lubbad R, Loset S (2014) Simulating ice-sloping structure interactions with the cohesive element method. J Offshore Mech Arct Eng 136(3):031501

    Google Scholar 

  22. Nadukandi P, Servan-Camas B, Becker PA, Garcia-Espinosa J (2017) Seakeeping with the semi-Lagrangian particle finite element method. Comput Part Mech 4(3):321–329

    Article  Google Scholar 

  23. Onate E, Garcia J, Idelsohn SR (2004) Ship hydrodynamics (2004) in encyclopedia of computational mechanics, vol 2, ed by Hughes TJR, de Borst R, Stein E

    Google Scholar 

  24. Onate E, Zarate F, Miquel J, Santasusana M, Celigueta MA, Arrufat F, Gandikota R, Valiullin K, Ring L (2015) A local constitutive model for the discrete element method. Application to geomaterials and concrete. Comput Part Mech 2(2):139–160

    Article  Google Scholar 

  25. Shipyards’ and Maritime Equipment Association (SeaEurope) (2018) Market forecast report. https://bit.ly/2HsRKVc

  26. Su B, Riska-K, Moan T (2010) A numerical method for the prediction of ship performance in level ice. Cold Reg Sci Technol 60(3):177–188

    Article  Google Scholar 

  27. Zhou L, Riska-K. Moan T, Su B (2013) Numerical modeling of ice loads on an icebreaking tanker: comparing simulations with model tests. Old Reg Sci Technol 87:33–46

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the NICE-SHIP project under the NICOP Award N62909-16-1-2236 issued by the Office of Naval Research Global. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio García-Espinosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Espinosa, J., Oñate, E., Camas, B.S., Celigueta, M.A., Latorre, S., Colom-Cobb, J. (2020). Development of New Lagrangian Computational Methods for Ice-Ship Interaction Problems: NICESHIP Project. In: Diez, P., Neittaanmäki, P., Periaux, J., Tuovinen, T., Pons-Prats, J. (eds) Computation and Big Data for Transport. Computational Methods in Applied Sciences, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-030-37752-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37752-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37751-9

  • Online ISBN: 978-3-030-37752-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics