Skip to main content

ABS Hand Exoskeleton Prototypes: Experimental Results

  • Chapter
  • First Online:
Development and Testing of Hand Exoskeletons

Part of the book series: Springer Theses ((Springer Theses))

  • 328 Accesses

Abstract

This chapter is the dedicated to the description of the experimental results represented by the production and testing of three hand exoskeletons (Secciani et al in Advances in italian mechanism science. Springer International Publishing, Cham, pp 307–315, 2019 [1]; Secciani et al in Wearable robotics: challenges and trends. Springer International Publishing, Cham, pp 440–444, 2019 [2]). Each manufactured prototype aimed to validate a specific part of the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kinovea.org/.

  2. 2.

    http://www.savoxusa.com.

  3. 3.

    https://www.pololu.com.

  4. 4.

    http://hitecrcd.com/products/servos/sport-servos/digital-sport-servos/hs-5495bh-hv-digital-karbonite-gear-sport-servo/product.

  5. 5.

    https://learn.sparkfun.com/tutorials/myoware-muscle-sensor-kit.

  6. 6.

    https://www.01mechatronics.com/product/supermodified-v30-rc-servos.

References

  1. Secciani N, Bianchi M, Meschini A, Ridolfi A, Volpe Y, Governi L, Allotta B (2019) Assistive hand exoskeletons: the prototypes evolution at the university of florence. In: Carbone G, Gasparetto A (eds) Advances in italian mechanism science. Springer International Publishing, Cham, pp 307–315

    Chapter  Google Scholar 

  2. Secciani N, Bianchi M, Ridolfi A, Vannetti F, Allotta B (2019) Assessment of a hand exoskeleton control strategy based on user’s intentions classification starting from surface emg signals. In: Carrozza MC, Micera S, Pons JL (eds) Wearable robotics: challenges and trends. Springer International Publishing, Cham, pp 440–444

    Chapter  Google Scholar 

  3. Bianchi M, Fanelli F, Conti R, Governi L, Meli E, Ridolfi A, Rindi A, Vannetti F, Allotta B (2017) Design and motion analysis of a wearable and portable hand exoskeleton. In: González-Vargas J, Ibáñez J, Contreras-Vidal JL, van der Kooij H, Pons JL (eds) Wearable robotics: challenges and trends. Springer International Publishing, Cham, pp 373–377

    Chapter  Google Scholar 

  4. Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89(1):149–185. [Online]. https://doi.org/10.1007/PL00011391

    Article  MathSciNet  Google Scholar 

  5. Conti R, Meli E, Ridolfi A, Bianchi M, Governi L, Volpe Y, Allotta B (2017) Kinematic synthesis and testing of a new portable hand exoskeleton. Meccanica

    Google Scholar 

  6. Lobo-Prat J, Kooren PN, Stienen AH, Herder JL, Koopman BF, Veltink PH (2014) Non-invasive control interfaces for intention detection in active movement-assistive devices. J NeuroEngineering Rehabil 11(1):168. [Online]. https://doi.org/10.1186/1743-0003-11-168

    Article  Google Scholar 

  7. Adewuyi AA, Hargrove LJ, Kuiken TA (2016) Evaluating emg feature and classifier selection for application to partial-hand prosthesis control. Front Neurorobotics 10:15. [Online]. https://www.frontiersin.org/article/10.3389/fnbot.2016.00015

  8. Bianchi M, Buetzer T, Fanelli F, Secciani N, Ridolfi A, Lambercy O, Vannetti F, Allotta B (2016) Development of an EMG triggered hand exoskeleton for assistive and rehabilitation purposes. In: Proceedings of the 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS 2016), Oct 2016

    Google Scholar 

  9. Li X, Chen S, Zhang H, Samuel OW, Wang H, Fang P, Zhang X, Li G (2016) Towards reducing the impacts of unwanted movements on identification of motion intentions. J Electromyogr Kinesiol 28:90–98. [Online]. http://www.sciencedirect.com/science/article/pii/S1050641116300189

  10. Hudgins B, Parker P, Scott RN (1993) A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40(1):82–94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Bianchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianchi, M. (2020). ABS Hand Exoskeleton Prototypes: Experimental Results. In: Development and Testing of Hand Exoskeletons. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-37685-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37685-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37684-0

  • Online ISBN: 978-3-030-37685-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics