Skip to main content

Lifetime Prediction of Threaded Connections of Hydraulic Turbines Based on Stress State Monitoring System

  • Conference paper
  • First Online:
  • 777 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1113))

Abstract

This work deals with development of a monitoring system for the stress-strain state of bolted connections of hydraulic turbines. The wireless strain gauge module is an autonomous hardware element, with its own embedded power supply. The transfer of information from the module to the data recording and processing equipment is performed by acoustic interlinking through the impeller body and the shaft of the hydrogenerator. Processing the results of measurements of the stress state of bolted joints is carried out using methods for assessing the residual life. The approaches proposed in this work allow constructing a system for monitoring the residual life of bolted connections of hydraulic turbines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jones, D.R.H.: Failure Analysis Case Studies : A Sourcebook of Case Studies Selected from the Pages of Engineering Failure Analysis 1994–1996. Elsevier (1998)

    Google Scholar 

  2. Jones, D.R.H.: Failure Analysis Case Studies II : A Sourcebook of Case Studies Selected from the Pages of Engineering Failure Analysis 1997–1999. Elsevier, Pergamon (2001)

    Google Scholar 

  3. Jones, D.R.H.: Failure Analysis Case Studies III : A Sourcebook of Case Studies Selected from the Pages of Engineering Failure Analysis 2000–2002. Elsevier (2004)

    Google Scholar 

  4. Esaklul, K.A., ASM International: Handbook of Case Histories in Failure Analysis. ASM International, Cleveland (1992)

    Google Scholar 

  5. Luo, Y., Wang, Z., Zeng, J., Lin, J.: Fatigue of piston rod caused by unsteady, unbalanced, unsynchronized blade torques in a Kaplan turbine. Eng. Fail. Anal. 17, 192–199 (2010). https://doi.org/10.1016/J.ENGFAILANAL.2009.06.003

    Article  Google Scholar 

  6. Miclosina, C.-O., Campian, C., Frunzaverde, D., Cojocaru, V.: Fatigue Analysis of an Outer Bearing Bush of a Kaplan Turbine (2011)

    Google Scholar 

  7. Câmpian, V.C., Frunzaverde, D., Nedelcu, D., Marginean, G.: Failure analysis of a kaplan turbine runner blade. In: Proceedings of 24th IAHR Symposium on Hydraulic Machinery and Systems, pp. 1–10 (2008)

    Google Scholar 

  8. Diego, G., Serrano, M., Lancha, A.: Failure analysis of a multiplier from a Kaplan turbine. Eng. Fail. Anal. 7, 27–34 (2000). https://doi.org/10.1016/S1350-6307(99)00006-0

    Article  Google Scholar 

  9. Arsić, M., Bošnjak, S., Međo, B., Burzić, M., Vistać, B., Savić, Z.: Undefined: influence of loading regimes and operational environment on fatigue state of components of turbine and hydromechanical equipment at hydropower (2012) http://e2012.drustvo-termicara.com

  10. Mackerle, J.: Finite element analysis of fastening and joining: a bibliography (1990–2002). Int. J. Press. Vessel Pip. 80, 253–271 (2003). https://doi.org/10.1016/S0308-0161(03)00030-9

    Article  Google Scholar 

  11. Kulak, G.L., Fisher, J.W., Struik, J.H.A., Fisher, J.W.: Guide to Design Criteria for Bolted and Riveted Joints. Wiley, Hoboken (1987)

    Google Scholar 

  12. Bickford, J.H.: Introduction to the Design and Behavior of Bolted Joints. CRC Press, Boca Raton (2008)

    Google Scholar 

  13. Casanova, F.: Failure analysis of the draft tube connecting bolts of a Francis-type hydroelectric power plant. Eng. Fail. Anal. 16, 2202–2208 (2009). https://doi.org/10.1016/J.ENGFAILANAL.2009.03.003

    Article  Google Scholar 

  14. Cetin, A., Härkegård, G.: Fatigue life prediction for large threaded components. Proc. Eng. 2, 1225–1233 (2010). https://doi.org/10.1016/J.PROENG.2010.03.133

    Article  Google Scholar 

  15. Zhao, L. Bin, Liu, F.R., Zhang, J.Y.: 3D numerical simulation and fatigue life prediction of high strength threaded bolt. Key Eng. Mater. 417–418, 885–888 (2009). https://doi.org/10.4028/www.scientific.net/KEM.417-418.885

  16. Zhang, L., Feng, F., Fan, X., Jiang, P.: Reliability analysis of francis turbine blade against fatigue failure under stochastic loading. In: 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, pp. 987–990. IEEE (2012). https://doi.org/10.1109/ICQR2MSE.2012.6246390

  17. Larin, O.O., Vodka, O.O., Trubayev, O.I.: The fatigue life-time propagation of the connection elements of long-term operated hydro turbines considering material degradation. PNRPU Mech. Bull. 1, 167–193 (2014)

    Article  Google Scholar 

  18. Wang, T., Song, G., Liu, S., Li, Y., Xiao, H.: Review of bolted connection monitoring. Int. J. Distrib. Sens. Networks. 9, 871213 (2013). https://doi.org/10.1155/2013/871213

    Article  Google Scholar 

  19. Park, K.-T., Yu, Y.-J., Shin, H., Lee, J.-H., Lee, W.-S.: Monitoring system for bolt joints on steel structures, 24 March 2011. https://doi.org/10.1117/12.880301

  20. Wang, T., Song, G., Wang, Z., Li, Y.: Proof-of-concept study of monitoring bolt connection status using a piezoelectric based active sensing method. Smart Mater. Struct. 22, 087001 (2013). https://doi.org/10.1088/0964-1726/22/8/087001

    Article  Google Scholar 

  21. Wang, B., Huo, L., Chen, D., Li, W., Song, G.: Impedance-based pre-stress monitoring of rock bolts using a piezoceramic-based smart washer—a feasibility study. Sensors 17, 250 (2017). https://doi.org/10.3390/s17020250

    Article  Google Scholar 

  22. Heyman, J.S.: A CW ultrasonic bolt-strain monitor. Exp. Mech. 17, 183–187 (1977). https://doi.org/10.1007/BF02330995

    Article  Google Scholar 

  23. Jablonská, J., Mahdal, M., Kozubková M.: Undefined: spectral analysis of pressure, noise and vibration velocity measurement in cavitation (2017). http://degruyter.com

  24. Szmechta, M., Boczar, T., Frącz, P.: Frequency and time-frequency analysis of acoustic cavitation noise in insulating oils. Acta Phys. Pol. A 120, 744–747 (2011). https://doi.org/10.12693/APhysPolA.120.744

    Article  Google Scholar 

  25. Djakin, V.I., Zav’jalov, P.S., Bondarenko, A.V.: Measurement and spectral analysis of pressure pulsations in hydro turbines. Bull. NTU “KhPI.” 45–50 (1973)

    Google Scholar 

  26. Model KSN 1165A - Bullet Tweeter - Piezo Source Store. http://piezosourcestore.bestgrouptechnologies.com/model-ksn-1165a-bullet-tweeter/. Accessed 15 Oct 2019

  27. Schijve, J.: Fatigue of Structures and Materials. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  28. Larin, O., Vodka, O.: A probability approach to the estimation of the process of accumulation of the high-cycle fatigue damage considering the natural aging of a material. Int. J. Damage Mech. 24, 294–310 (2014). https://doi.org/10.1177/1056789514536067

    Article  Google Scholar 

  29. Larin, O., Barkanov, E., Vodka, O.: Prediction of reliability of the corroded pipeline considering the randomness of corrosion damage and its stochastic growth. Eng. Fail. Anal. 66, 60–71 (2016). https://doi.org/10.1016/j.engfailanal.2016.03.022

    Article  Google Scholar 

  30. Larin, O., Kelin, A., Naryzhna, R., Potopalska, K., Trubayev, O.: Analysis of the pump strength to extend its lifetime. Nucl. Radiat. Saf. 3(79), 30–35 (2018)

    Article  Google Scholar 

  31. Vodka, O.: Computation tool for assessing the probability characteristics of the stress state of the pipeline part defected by pitting corrosion. Adv. Eng. Softw. 90, 159–168 (2015). https://doi.org/10.1016/j.advengsoft.2015.08.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksii Vodka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trubayev, O., Ulyanov, Y., Vodka, O. (2020). Lifetime Prediction of Threaded Connections of Hydraulic Turbines Based on Stress State Monitoring System. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds) Integrated Computer Technologies in Mechanical Engineering. Advances in Intelligent Systems and Computing, vol 1113. Springer, Cham. https://doi.org/10.1007/978-3-030-37618-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37618-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37617-8

  • Online ISBN: 978-3-030-37618-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics