Combining Machine Learning and Operations Research Methods to Advance the Project Management Practice

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1162)


Project Management is a complex practice that is associated with a series of challenges such as handling of conflicts and dependencies in resource allocation, fine tuning of projects to avoid fragmented planning, handling of potential opportunities or threats during the execution of a project, and alignment between projects and business objectives. Traditionally, methods and tools to address these issues are based on analytical approaches developed in the realm of the Operations Research discipline. Aiming to facilitate and augment the quality of the Project Management practice, this paper proposes a hybrid approach that builds on the synergy between contemporary Machine Learning and Operations Research techniques. Based on past data, Machine Learning techniques can predict undesired situations, provide timely warnings and recommend preventive actions regarding problematic resource loads or deviations from business priority lists. The applicability of our approach is demonstrated through two real examples elaborating two different datasets. In these examples, we comment on the proper orchestration of the associated Operations Research and Machine Learning algorithms, paying equal attention to both optimization and big data manipulation issues.


Project Management Machine Learning Operations Research Intelligent optimization 


  1. 1.
    Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, pp. 265–283 (2016)Google Scholar
  2. 2.
    Aggarwal, C.C., Zhai, C.: Mining Text Data. Springer, Heidelberg (2012). Scholar
  3. 3.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases (VLDB 1215), San Francisco, pp. 487–499 (1994)Google Scholar
  4. 4.
    Alkhraisat, H.: Issue tracking system based on ontology and semantic similarity computation. Int. J. Adv. Comput. Sci. Appl. 7(11), 248–251 (2016)Google Scholar
  5. 5.
    Betts, C., Power, J., Ammar, W.: GrapAL: Querying Semantic Scholar’s Literature Graph. arXiv preprint arXiv:1902.05170 (2019, to appear)
  6. 6.
    Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment Problems, Philadelphia (2009)Google Scholar
  7. 7.
    Burke, L.I., Ignizio, J.P.: Neural networks and operations research: an overview. Comput. Oper. Res. 19(3), 179–189 (1992)zbMATHCrossRefGoogle Scholar
  8. 8.
    Candel, A., Parmar, V., LeDell, E., Arora, A.: Deep Learning with H2O, 6th edn. Inc. Accessed 19 Oct 2018
  9. 9.
    Cheung, S.O., Wong, P.S.P., Fung, A.S., Coffey, W.: Predicting project performance through neural networks. Int. J. Project Manag. 24(3), 207–215 (2006)CrossRefGoogle Scholar
  10. 10.
    Costantino, F., Gravio, G.D., Nonino, F.: Project selection in project portfolio management: an artificial neural network model based on critical success factors. Int. J. Proj. Manag. 33(8), 1744–1754 (2015)CrossRefGoogle Scholar
  11. 11.
    Dolan, E., More, J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dunning, I., Huchette, J., Lubin, M.: Jump: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Evans, J.R., Lindner, C.H.: Business analytics: the next frontier for decision sciences. Decis. Line 43(2), 4–6 (2012)Google Scholar
  14. 14.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)zbMATHGoogle Scholar
  15. 15.
    Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 93 (2018)CrossRefGoogle Scholar
  16. 16.
    Hill, J., Thomas, L.C., Allen, D.B.: Experts’ estimates of task durations in software development projects. Int. J. Proj. Manag. 18(1), 13–21 (2000)CrossRefGoogle Scholar
  17. 17.
    Holmes, G., Donkin, A., Witten, I.H.: Weka: a machine learning workbench. In: Proceedings of the 1994 Second Australian and New Zealand Conference, Adelaide, pp. 357–361 (1994)Google Scholar
  18. 18.
    Hooker, J.N., Van Hoeve, W.J.: Constraint programming and operations research. Constraints 23(2), 172–195 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Jaccard, P.: Étude comparative de la distribuition florale dans une portion des Alpes et des Jura. Bull. Soc. Vandoise Sci. Nat. 37, 547–579 (1901)Google Scholar
  20. 20.
    Kanakaris, N., Karacapilidis, N., Lazanas, A.: On the advancement of project management through a flexible integration of machine learning and operations research tools. In: 8th International Conference on Operations Research and Enterprise Systems (ICORES), Prague, pp. 362–369 (2019)Google Scholar
  21. 21.
    Karacapilidis, N., Malefaki, S., Charissiadis, A.: A novel framework for augmenting the quality of explanations in recommender systems. Intell. Decis. Technol. J. 11(2), 187–197 (2017)CrossRefGoogle Scholar
  22. 22.
    Karacapilidis, N.: Mastering Data-Intensive Collaboration and Decision Making: Cutting-Edge Research and Practical Applications in the Dicode Project. Studies in Big Data Series, vol. 5. Springer, Cham (2014). Scholar
  23. 23.
    Levitt, R.E., Kunz, J.C.: Using artificial intelligence techniques to support project management. Artif. Intell. Eng. Des. Anal. Manuf. 1(1), 3–24 (1987)CrossRefGoogle Scholar
  24. 24.
    Maurya, A., Telang, R.: Bayesian multi-view models for member-job matching and personalized skill recommendations. In: 2017 IEEE International Conference on Big Data, pp. 1193–1202. IEEE (2017)Google Scholar
  25. 25.
    Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the fifth ACM conference on Digital libraries, pp. 195–204. ACM (2000)Google Scholar
  26. 26.
    O’Malley, O.: Terabyte sort on apache hadoop. Yahoo, pp. 1–3 (2008).
  27. 27.
    Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lerer, A.: Automatic differentiation in pytorch. In: 31st Conference on Neural Information Processing Systems, Long Beach, pp. 1–4 (2017)Google Scholar
  28. 28.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(1), 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Pittaras, N., Giannakopoulos, G., Tsekouras, L., Varlamis, I.: Document clustering as a record linkage problem. In: Proceedings of the ACM Symposium on Document Engineering, p. 39. ACM (2018)Google Scholar
  30. 30.
    Radin, R.L.: Optimization in Operations Research. Prentice-Hall, New Jersey (1998)Google Scholar
  31. 31.
    Raschka, S.: Python Machine Learning. Packt Publishing Ltd., Birmingham (2015)Google Scholar
  32. 32.
    Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)Google Scholar
  33. 33.
    Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5(1), 101–141 (2004)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of hierarchical multilabel classification models. J. Mach. Learn. Res. 7(1), 1601–1626 (2006)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Rummelhart, D., Hinton, G., Williams, R.: Learning Internal Representations by Error Propagation. Parallel Distributed Processing. MIT Press, Cambridge (1986)Google Scholar
  36. 36.
    Shivaswamy, P.K., Bhattacharyya, C., Smola, A.J.: Second order cone programming approaches for handling missing and uncertain data. J. Mach. Learn. Res. 7(1), 1283–1314 (2006)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Smith, K.A., Gupta, J.N.: Neural networks in business: techniques and applications for the operations researcher. Comput. Oper. Res. 27(11), 1023–1044 (2000)zbMATHCrossRefGoogle Scholar
  38. 38.
    Spanakis, G., Siolas, G., Stafylopatis, A.: Exploiting Wikipedia knowledge for conceptual hierarchical clustering of documents. Comput. J. 55(3), 299–312 (2012)zbMATHCrossRefGoogle Scholar
  39. 39.
    Svejvig, P., Andersen, P.: Rethinking project management: a structured literature review with a critical look at the brave new world. Int. J. Proj. Manag. 33(2), 278–290 (2015)CrossRefGoogle Scholar
  40. 40.
    Trupti, M.K., Prashant, R.M.: Review on determining number of cluster in K-means clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 1(6), 90–95 (2013)Google Scholar
  41. 41.
    Tsekouras, L., Varlamis, I., Giannakopoulos, G.: Graph-based text similarity measure that employs named entity information. In: RANLP, pp. 765–771 (2017)Google Scholar
  42. 42.
    Vazirgiannis, M., Malliaros, F.D., Nikolentzos, G.: GraphRep: boosting text mining, NLP and information retrieval with graphs. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 2295–2296. ACM (2018)Google Scholar
  43. 43.
    Wang, Y.R., Yu, C.Y., Chan, H.H.: Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models. Int. J. Proj. Manag. 30(4), 470–478 (2012)CrossRefGoogle Scholar
  44. 44.
    Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Industrial Management and Information Systems Lab, MEADUniversity of PatrasRio PatrasGreece

Personalised recommendations