A Genetic Algorithm Approach to Multi-Agent Mission Planning Problems

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1162)


Multi-Agent Systems (MASs) have received great attention from scholars and engineers in different domains, including computer science and robotics. MASs try to solve complex and challenging problems (e.g., a mission) by dividing them into smaller problem instances (e.g., tasks) that are allocated to the individual autonomous entities (e.g., agents). By fulfilling their individual goals, they lead to the solution to the overall mission. A mission typically involves a large number of agents and tasks, as well as additional constraints, e.g., coming from the required equipment for completing a given task. Addressing such problem can be extremely complicated for the human operator, and several automated approaches fall short of scalability. This paper proposes a genetic algorithm for the automation of multi-agent mission planning. In particular, the contributions of this paper are threefold. First, the mission planning problem is cast into an Extended Colored Traveling Salesperson Problem (ECTSP), formulated as a mixed integer linear programming problem. Second, a precedence constraint reparation algorithm to allow the usage of common variation operators for ECTSP is developed. Finally, a new objective function minimizing the mission makespan for multi-agent mission planning problems is proposed.


Multi-Agent Systems Multi-agent mission planning Extended Colored Traveling Salesperson (ECTSP) Genetic algorithms 



Special thanks to Afshin E. Ameri for developing GUI for the MMT.


  1. 1.
    Alighanbari, M., Kuwata, Y., How, J.P.: Coordination and control of multiple UAVs with timing constraints and loitering. In: Proceedings of the 2003 American Control Conference, vol. 6, pp. 5311–5316, June 2003Google Scholar
  2. 2.
    Baker, B.M., Ayechew, M.: A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 30(5), 787–800 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bello-Orgaz, G., Ramirez-Atencia, C., Fradera-Gil, J., Camacho, D.: GAMPP: genetic algorithm for UAV mission planning problems. In: Novais, P., Camacho, D., Analide, C., El Fallah Seghrouchni, A., Badica, C. (eds.) Intelligent Distributed Computing IX. SCI, vol. 616, pp. 167–176. Springer, Cham (2016). Scholar
  5. 5.
    Bhatt, N., Chauhan, N.R.: Genetic algorithm applications on job shop scheduling problem: a review. In: International Conference on Soft Computing Techniques and Implementations (ICSCTI), pp. 7–14 (2015)Google Scholar
  6. 6.
    Brie, A.H., Morignot, P.: Genetic planning using variable length chromosomes. In: International Conference on Automated Planning and Scheduling, pp. 320–329. ICAPS (2005)Google Scholar
  7. 7.
    Contreras-Bolton, C., Parada, V.: Automatic combination of operators in a genetic algorithm to solve the traveling salesman problem. PLoS One 10(9), e0137724 (2015)CrossRefGoogle Scholar
  8. 8.
    Cushing, W., Kambhampati, S., Mausam, Weld, D.S.: When is temporal planning really temporal? In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 1852–1859 (2007)Google Scholar
  9. 9.
    Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)CrossRefGoogle Scholar
  11. 11.
    Finke, G., Claus, A., Gunn, E.: A two-commodity network flow approach to the traveling salesman problem. Congressus Numerantium 41(1), 167–178 (1984)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Frasheri, M., Cürüklü, B., Ekström, M., Papadopoulos, A.V.: Adaptive autonomy in a search and rescue scenario. In: Proceedings of the 12th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 150–155, September 2018Google Scholar
  13. 13.
    Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)CrossRefGoogle Scholar
  14. 14.
    Giardini, G., Kalmár-Nagy, T.: Genetic algorithm for combinatorial path planning: the subtour problem. Math. Probl. Eng. 1–31 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gouveia, L., Pesneau, P., Ruthmair, M., Santos, D.: Combining and projecting flow models for the (precedence constrained) asymmetric traveling salesman problem. Networks 71(4), 451–465 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)CrossRefGoogle Scholar
  17. 17.
    Qing-dao-er ji, R., Wang, Y.: A new hybrid genetic algorithm for job shop scheduling problem. Comput. Oper. Res. 39(10), 2291–2299 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kadri, R.L., Boctor, F.F.: An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: the single mode case. Eur. J. Oper. Res. 265(2), 454–462 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Helsgaun, K.: An effective implementation of K-opt moves for the Lin-Kernighan TSP heuristic. Math. Program. Comput. 1, 119–163 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: a review of the state-of-the-art. In: Koubâa, A., Martínez-de Dios, J.R. (eds.) Cooperative Robots and Sensor Networks 2015. SCI, vol. 604, pp. 31–51. Springer, Cham (2015). Scholar
  21. 21.
    Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 32(12), 1495–1512 (2013)CrossRefGoogle Scholar
  22. 22.
    Kubo, M., Kasugai, H.: The precedence constrained traveling salesman problem. J. Oper. Res. Soc. Jpn. 34(2), 152–172 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kuschel, T.: Two-commodity network flow formulations for vehicle routing problems with simultaneous pickup & delivery and a many-to-many structure. Inform. Kommunikationssysteme Supply Chain Manag. Logist. Transp. 5, 153–169 (2008)Google Scholar
  24. 24.
    Landa-Torres, I., Manjarres, D., Bilbao, S., Del Ser, J.: Underwater robot task planning using multi-objective meta-heuristics. Sensors 17(4:762), 1–15 (2017)Google Scholar
  25. 25.
    Langevin, A., Desrochers, M., Desrosiers, J., Gélinas, S., Soumis, F.: A two-commodity flow formulation for the traveling salesman and the makespan problems with time windows. Networks 23(7), 631–640 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Li, J., Zhou, M., Sun, Q., Dai, X., Yu, X.: Colored traveling salesman problem. IEEE Trans. Cybern. 45(11), 2390–2401 (2015)CrossRefGoogle Scholar
  27. 27.
    Ma, F., Li, H.: An algorithm in solving the TSP based on the improved genetic algorithm. In: 2009 First International Conference on Information Science and Engineering (ICISE 2009), pp. 106–108, December 2009Google Scholar
  28. 28.
    Maoudj, A., Bouzouia, B., Hentout, A., Toumi, R.: Multi-agent approach for task allocation and scheduling in cooperative heterogeneous multi-robot team: Simulation results. In: 13th International Conference on Industrial Informatics (INDIN), pp. 179–184, July 2015Google Scholar
  29. 29.
    Masum, A.K.M., Shahjalal, M., Faruque, F., Sarker, I.H.: Solving the vehicle routing problem using genetic algorithm. Int. J. Adv. Comput. Sci. Appl. 2(7), 126–131 (2011)Google Scholar
  30. 30.
    Meng, X., Li, J., Dai, X., Dou, J.: Variable neighborhood search for a colored traveling salesman problem. IEEE Trans. Intell. Transp. Syst. 19(4), 1018–1026 (2018)CrossRefGoogle Scholar
  31. 31.
    Meng, X., Li, J., Zhou, M., Dai, X., Dou, J.: Population-based incremental learning algorithm for a serial colored traveling salesman problem. IEEE Trans. Syst. Man Cybern.: Syst. 48(2), 277–288 (2018)CrossRefGoogle Scholar
  32. 32.
    Miloradović., B., Çürüklü., B., Ekström., M., Papadopoulos., A.V.: Extended colored traveling salesperson for modeling multi-agent mission planning problems. In: Proceedings of the 8th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, INSTICC, pp. 237–244. SciTePress (2019)Google Scholar
  33. 33.
    Miloradović, B., Çürüklü, B., Ekström, M.: A genetic planner for mission planning of cooperative agents in an underwater environment. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8, December 2016Google Scholar
  34. 34.
    Miloradović, B., Çürüklü, B., Ekström, M.: A genetic mission planner for solving temporal multi-agent problems with concurrent tasks. In: Tan, Y., Takagi, H., Shi, Y., Niu, B. (eds.) ICSI 2017. LNCS, vol. 10386, pp. 481–493. Springer, Cham (2017). Scholar
  35. 35.
    Monma, C.: Sequencing with general precedence constraints. Discrete Appl. Math. 3(2), 137–150 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Moon, C., Kim, J., Choi, G., Seo, Y.: An efficient genetic algorithm for the traveling salesman problem with precedence constraints. Eur. J. Oper. Res. 140(3), 606–617 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Nian, L., Jinhua, Z.: Hybrid genetic algorithm for TSP. In: Seventh International Conference on Computational Intelligence and Security, pp. 71–75, December 2011Google Scholar
  38. 38.
    Nunes, E., Manner, M., Mitiche, H., Gini, M.: A taxonomy for task allocation problems with temporal and ordering constraints. Robot. Autonom. Syst. 90, 55–70 (2017)CrossRefGoogle Scholar
  39. 39.
    Puljić, K., Manger, R.: Comparison of eight evolutionary crossover operators for the vehicle routing problem. Math. Commun. 18(2), 359–375 (2013)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Ramirez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: Solving complex multi-UAV mission planning problems using multi-objective genetic algorithms. Soft Comput. 21(17), 4883–4900 (2017)CrossRefGoogle Scholar
  41. 41.
    Ramirez-Atencia, C., Del Ser, J., Camacho, D.: Weighted strategies to guide a multi-objective evolutionary algorithm for multi-UAV mission planning. Swarm Evol. Comput. 44, 480–495 (2019)CrossRefGoogle Scholar
  42. 42.
    Ramirez-Atencia, C., R-Moreno, M.D., Camacho, D.: Handling swarm of UAVs based on evolutionary multi-objective optimization. Prog. Artif. Intell. 6(3), 263–274 (2017)CrossRefGoogle Scholar
  43. 43.
    Ramirez-Atencia, C., Rodríguez-Fernández, V., Gonzalez-Pardo, A., Camacho, D.: New artificial intelligence approaches for future UAV ground control stations. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2775–2782 (2017)Google Scholar
  44. 44.
    Valavanis, K.P., Vachtsevanos, G.J.: Handbook of Unmanned Aerial Vehicles. Springer, Heidelberg (2014)zbMATHGoogle Scholar
  45. 45.
    Yu, Y., Chen, Y., Li, T.: A new design of genetic algorithm for solving TSP. In: Fourth International Joint Conference on Computational Sciences and Optimization, pp. 309–313, April 2011Google Scholar
  46. 46.
    Nagata, Y., Kobayashi, S.: A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem. Inform. J. Comput. 25, 346–363 (2013)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Zhong, W.: Multiple traveling salesman problem with precedence constraints based on modified dynamic tabu artificial bee colony algorithm. J. Inform. Comput. Sci. 11(4), 1225–1232 (2014)CrossRefGoogle Scholar
  48. 48.
    Zhou, X., Wang, W., Wang, T., Li, X., Li, Z.: A research framework on mission planning of the UAV swarm. In: 12th System of Systems Engineering Conference, pp. 1–6, June 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Innovation, Design and EngineeringMälardalen UniversityVästeråsSweden

Personalised recommendations