Skip to main content

VCII-Based Sensor Interface for Silicon Photomultiplier

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 629))

Included in the following conference series:

  • 703 Accesses

Abstract

We here propose a voltage conveyor-based sensor interface for silicon photomultipliers (SiPMs). The solution addresses a mixed-mode (voltage/current) design taking advantage from the current-mode approach to increase the response time and the drive capability. This solution, based on a voltage conveyor (VCII) shows very high transimpedance gain that is independent from the bandwidth and is able to work also with a very high input parasitic capacitive impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplon J, Kulis S (2015) Review of input stages used in front end electronics for particle detectors (Online)

    Google Scholar 

  2. de Medeiros Silva M, Oliveira LB (2014) Regulated common-gate transimpedance amplifier designed to operate with a silicon photo-multiplier at the input. IEEE Trans Circ Syst I Reg Pap 61(3):725–735

    Article  Google Scholar 

  3. Dorosz P, Baszczyk M, Kucewicz W, Mik Ł (2018) Low-power front-end ASIC for silicon photomultiplier. IEEE Trans Nucl Sci 65(4):1070–1078

    Article  ADS  Google Scholar 

  4. Liu J, Sun Q, Fan Z, Jia Y (2018) TOF lidar development in autonomous vehicle. In: IEEE optoelectronics global conference, pp 185–190

    Google Scholar 

  5. Santillan J, Makinano-Santillan M, Cutamora L (2016) Integrating LiDAR and flood simulation models in determining exposure and vulnerability of buildings to extreme rainfall-induced flood hazards. In: International geoscience and remote sensing symposium, pp 7585–7588

    Google Scholar 

  6. Gargoum S, El-Basyouny K (2017) Automated extraction of road features using LiDAR data: a review of LiDAR applications in transportation. In: International conference on transportation information and safety, pp 563–574

    Google Scholar 

  7. Pantoli L, Barile G, Leoni A, Muttillo M, Stornelli V (2018) A novel electronic interface for micromachined Si-based photomultipliers. Micromachines 9(10):507

    Article  Google Scholar 

  8. Barile G, Leoni A, Pantoli L, Safari L, Stornelli V (2018) A new VCII based low-power low-voltage front-end for silicon photomultipliers. In: International conference on smart and sustainable technologies (SpliTech), pp 1–4

    Google Scholar 

  9. Pantoli L, Barile G, Leoni A, Muttillo M, Stornelli V (2019) Electronic interface for lidar system and smart cities applications. J Commun Softw Syst 15(2):118–125

    Google Scholar 

  10. Zhang Y, Gu S, Yang J, Jose Alvarez M, Kong H (2018) Fusion of LiDAR and camera by scanning in LiDAR imagery and image-guided diffusion for urban road detection. In: Intelligent vehicles symposium, pp 579–584

    Google Scholar 

  11. Zhang Y, Xiong X, Zheng M, Huang X (2015) LiDAR strip adjustment using multifeatures matched with aerial images. IEEE Trans Geosci Remote Sens 53(2):976–987

    Article  ADS  Google Scholar 

  12. Nam ES, Oh MS, Kim HY, Chong YJ (2008) Eye safe laser radar using a microchip laser, 2-dimensional InGaAs/InP photodiode arrays and the bi-axial optical lens system. In: 2008 Asia-Pacific microwave conference, pp 1–4

    Google Scholar 

  13. Safari L, Barile G, Stornelli V, Ferri G (2019) An overview on the second generation voltage conveyor: features, design and applications. IEEE Trans Circ Syst II Express Briefs 66(4):547–551

    Google Scholar 

  14. Stornelli V, Ferri G, Pantoli L, Barile G, Pennisi S (2018) A rail-to-rail constant-gm CCII for instrumentation amplifier applications. AEU Int J Electron Commun 91:103–109

    Article  Google Scholar 

  15. Safari L, Barile G, Ferri G, Stornelli V (2018) High performance voltage output filter realizations using second generation voltage conveyor. Int J RF Microwave Comput Aided Eng 28(9):e21534

    Article  Google Scholar 

  16. Stornelli V, Ferri G (2014) A single current conveyor-based low voltage low power bootstrap circuit for ElectroCardioGraphy and ElectroEncephaloGraphy acquisition systems. Analog Integr Circ Sig Process 79(1):171–175

    Article  Google Scholar 

  17. Ferri G, Parente FR, Stornelli V (2017) Current conveyor-based differential capacitance analog interface for displacement sensing application. AEU Int J Electron Commun 81:83–91

    Article  Google Scholar 

  18. Barile G et al (2017) Power-efficient dynamic-biased CCII. In: 2017 European conference on circuit theory and design, ECCTD

    Google Scholar 

  19. Stornelli V, Ferri G (2013) A 0.18 μm CMOS DDCCII for portable LV-LP filters. Radioengineering 22(2):434–439

    Google Scholar 

  20. Falconi C, Ferri G, Stornelli V, De Marcellis A, Mazzieri D, D’Amico A (2008) Current-mode high-accuracy high-precision CMOS amplifiers. IEEE Trans Circ Syst II Express Briefs 55(5):394–398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Barile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barile, G., Leoni, A., Muttillo, M., Pantoli, L. (2020). VCII-Based Sensor Interface for Silicon Photomultiplier. In: Di Francia, G., et al. Sensors and Microsystems. AISEM 2019. Lecture Notes in Electrical Engineering, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-030-37558-4_3

Download citation

Publish with us

Policies and ethics