Skip to main content

Music Generation Using an Interactive Evolutionary Algorithm

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (MedPRAI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1144))

Abstract

Music generation with the aid of computers has been recently grabbed the attention of many scientists in the area of artificial intelligence. Deep learning techniques have evolved sequence production methods for this purpose. Yet, a challenging problem is how to evaluate a music generated by a machine. In this paper, a methodology has been developed based upon an interactive evolutionary optimization method, with which the scoring of the generated musics are primarily performed by human expertise, during the training. This music quality scoring is modeled using a BiLSTM recurrent neural network. Moreover, the innovative generated music through a Genetic algorithm, will then be evaluated using this BiLSTM network. The results of this mechanism clearly show that the proposed method is able to create pleasurable melodies with desired styles and pieces. This method is also quite fast, compared to the state-of-the-art data-oriented evolutionary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more information, please refer to www.abcnotation.com.

  2. 2.

    http://abcnotation.com/tunes.

  3. 3.

    https://www.youtube.com/watch?v=Ci6DHEwAYcQ&feature=youtu.be.

References

  1. Agarwal, S., Saxena, V., Singal, V., Aggarwal, S.: LSTM based music generation with dataset preprocessing and reconstruction techniques. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 455–462. IEEE (2018)

    Google Scholar 

  2. Agres, K., Herremans, D., Bigo, L., Conklin, D.: Harmonic structure predicts the enjoyment of uplifting trance music. Front. Psychol. 7, 1999 (2017)

    Article  Google Scholar 

  3. Agres, K.R., DeLong, J.E., Spivey, M.: The sparsity of simple recurrent networks in musical structure learning. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 31 (2009)

    Google Scholar 

  4. Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: Modeling temporal dependencies in high-dimensional sequences: application to polyphonic music generation and transcription. arXiv preprint arXiv:1206.6392 (2012)

  5. Brooks, F.P., Hopkins, A., Neumann, P.G., Wright, W.V.: An experiment in musical composition. IRE Trans. Electron. Comput. 3, 175–182 (1957)

    Article  Google Scholar 

  6. Browne, T.M., Fox, C.: Global expectation-violation as fitness function in evolutionary composition. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 538–546. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01129-0_60

    Chapter  Google Scholar 

  7. Davismoon, S., Eccles, J.: Combining musical constraints with Markov transition probabilities to improve the generation of creative musical structures. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 361–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12242-2_37

    Chapter  Google Scholar 

  8. Eck, D., Schmidhuber, J.: A first look at music composition using LSTM recurrent neural networks. Istituto Dalle Molle Di Studi Sull IntelligenzaArtificiale 103, 48 (2002)

    Google Scholar 

  9. Herremans, D.: Morpheus: automatic music generation with recurrent pattern constraints and tension profiles (2016)

    Google Scholar 

  10. Herremans, D., Chuan, C.H.: Modeling musical context with word2vec. arXiv preprint arXiv:1706.09088 (2017)

  11. Herremans, D., Sörensen, K.: Composing first species counterpoint with a variable neighbourhood search algorithm. J. Math. Arts 6(4), 169–189 (2012)

    Article  Google Scholar 

  12. Herremans, D., Sörensen, K.: Composing fifth species counterpoint music with a variable neighborhood search algorithm. Expert Syst. Appl. 40(16), 6427–6437 (2013)

    Article  Google Scholar 

  13. Hofmann, D.M.: A genetic programming approach to generating musical compositions. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 89–100. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16498-4_9

    Chapter  Google Scholar 

  14. Horner, A., Goldberg, D.E.: Genetic algorithms and computer-assisted music composition. In: ICMC 1991, pp. 479–482 (1991)

    Google Scholar 

  15. Kaliakatsos-Papakostas, M.A., Floros, A., Vrahatis, M.N.: Interactive music composition driven by feature evolution. SpringerPlus 5(1), 826 (2016)

    Article  Google Scholar 

  16. Ponce de León, P.J., Iñesta, J.M., Calvo-Zaragoza, J., Rizo, D.: Data-based melody generation through multi-objective evolutionary computation. J. Math. Music 10(2), 173–192 (2016)

    Google Scholar 

  17. Loughran, R., McDermott, J., O’Neill, M.: Grammatical music composition with dissimilarity driven hill climbing. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 110–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31008-4_8

    Chapter  Google Scholar 

  18. Makris, D., Kaliakatsos-Papakostas, M., Karydis, I., Kermanidis, K.L.: Combining LSTM and feed forward neural networks for conditional rhythm composition. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds.) EANN 2017. CCIS, vol. 744, pp. 570–582. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65172-9_48

    Chapter  Google Scholar 

  19. Manzelli, R., Thakkar, V., Siahkamari, A., Kulis, B.: An end to end model for automatic music generation: combining deep raw and symbolic audio networks. In: Proceedings of the Musical Metacreation Workshop at 9th International Conference on Computational Creativity, Salamanca, Spain (2018)

    Google Scholar 

  20. McVicar, M., Fukayama, S., Goto, M.: AutoLeadGuitar: automatic generation of guitar solo phrases in the tablature space. In: 2014 12th International Conference on Signal Processing (ICSP), pp. 599–604. IEEE (2014)

    Google Scholar 

  21. Mishra, A., Tripathi, K., Gupta, L., Singh, K.P.: Long short-term memory recurrent neural network architectures for melody generation. In: Bansal, J.C., Das, K.N., Nagar, A., Deep, K., Ojha, A.K. (eds.) Soft Computing for Problem Solving. AISC, vol. 817, pp. 41–55. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1595-4_4

    Chapter  Google Scholar 

  22. Lewis, J.P.: Creation by refinement and the problem of algorithmic music composition. In: Todd, P.M., Loy, G. (eds.) Music and Connectionism, p. 212. MIT Press, Cambridge (1991)

    Google Scholar 

  23. Pachet, F., Roy, P., Barbieri, G.: Finite-length Markov processes with constraints. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011)

    Google Scholar 

  24. Papadopoulos, A., Roy, P., Pachet, F.: Avoiding plagiarism in Markov sequence generation. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  25. Pinkerton, R.C.: Information theory and melody. Sci. Am. 194(2), 77–87 (1956)

    Article  Google Scholar 

  26. Scirea, M., Togelius, J., Eklund, P., Risi, S.: Affective evolutionary music composition with metacompose. Genet. Program. Evolvable Mach. 18(4), 433–465 (2017)

    Article  Google Scholar 

  27. Todd, P.M.: A connectionist approach to algorithmic composition. Comput. Music J. 13(4), 27–43 (1989)

    Article  Google Scholar 

  28. Tokui, N., Iba, H., et al.: Music composition with interactive evolutionary computation. In: Proceedings of the Third International Conference on Generative Art, vol. 17, pp. 215–226 (2000)

    Google Scholar 

  29. Tuohy, D.R., Potter, W.D.: A genetic algorithm for the automatic generation of playable guitar tablature. In: ICMC, pp. 499–502 (2005)

    Google Scholar 

  30. Waschka II, R.: Composing with genetic algorithms: GenDash. In: Miranda, E.R., Biles, J.A. (eds.) Evolutionary Computer Music, pp. 117–136. Springer, London (2007). https://doi.org/10.1007/978-1-84628-600-1_6

    Chapter  Google Scholar 

  31. Wu, J., Hu, C., Wang, Y., Hu, X., Zhu, J.: A hierarchical recurrent neural network for symbolic melody generation. arXiv preprint arXiv:1712.05274 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahil Mahdian Toroghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Farzaneh, M., Mahdian Toroghi, R. (2020). Music Generation Using an Interactive Evolutionary Algorithm. In: Djeddi, C., Jamil, A., Siddiqi, I. (eds) Pattern Recognition and Artificial Intelligence. MedPRAI 2019. Communications in Computer and Information Science, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-030-37548-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37548-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37547-8

  • Online ISBN: 978-3-030-37548-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics