Skip to main content

Application of PSO-Based Constrained Combinatorial Optimization to Segment Assignment in Shield Tunneling

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2019)

Abstract

This paper presents the application of particle swarm optimization (PSO) based constrained combinatorial optimization technique to assign tunnel segments and to improve the productivity in shield tunneling, a widely used tunnel construction method. This study considers the amount of soil excavated along a tunnel composed of the segments as an objective, and the deviation limit as constraints. In this problem, a feasible solution can be easily found by greedy search, though the constraints are very severe. The proposed method utilizes the found feasible solution to start to search near the feasible region. A two-dimensional simulation experiment using real-world construction data was performed to evaluate the effectiveness of the proposed method. The results demonstrate that the proposed method statistically outperforms the work of skilled engineers and other comparative methods in all test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonyadi, M., Li, X., Michalewicz, Z.: A hybrid particle swarm with velocity mutation for constraint optimization problems. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1–8. ACM (2013)

    Google Scholar 

  2. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. Citeseer (1995)

    Google Scholar 

  3. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), vol. 1, pp. 84–88. IEEE (2000)

    Google Scholar 

  4. Engelbrecht, A.P.: Fitness function evaluations: a fair stopping condition? In: Proceedings of 2014 IEEE Symposium on Swarm Intelligence (SIS), pp. 1–8. IEEE (2014)

    Google Scholar 

  5. Glover, F.W., Kochenberger, G.A. (eds.): Handbook of Metaheuristics, vol. 57. Springer, Heidelberg (2006). https://doi.org/10.1007/b101874

    Book  MATH  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  7. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. Found. Genet. Algorithms (FOGA) 1, 69–93 (1991)

    MathSciNet  Google Scholar 

  8. Gutiérrez, A., et al.: Comparison of different PSO initialization techniques for high dimensional search space problems: a test with FSS and antenna arrays. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 965–969. IEEE (2011)

    Google Scholar 

  9. Hasanipanah, M., Noorian-Bidgoli, M., Armaghani, D.J., Khamesi, H.: Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Eng. Comput. 32(4), 705–715 (2016)

    Article  Google Scholar 

  10. Hassanien, A.E., Emary, E.: Swarm Intelligence: Principles, Advances, and Applications. CRC Press, Boca Raton (2018)

    Google Scholar 

  11. Ihara, K., Kato, S., Nakaya, T., Ogi, T.: Constrained GA based segment assignment in shield tunneling to minimize the amount of excavated soil. In: Proceedings of 2018 IEEE 7th Global Conference on Consumer Electronics, pp. 229–230 (2018)

    Google Scholar 

  12. Ihara, K., Kato, S., Nakaya, T., Ogi, T., Masuda, H.: A PSO based approach to assign segments for reducing excavated soil in shield tunneling. In: Proceedings of the 11th International Conference on Agents and Artificial Intelligence, vol. 2, pp. 328–336 (2019)

    Google Scholar 

  13. Japan Society of Civil Engineers: Standard specifications for tunneling-2006: shield tunnels. Tunnel Engineering Committee, August 2007

    Google Scholar 

  14. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer, New York (2011)

    Google Scholar 

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  16. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108. IEEE (1997)

    Google Scholar 

  17. Koyama, Y.: Present status and technology of shield tunneling method in Japan. Tunn. Undergr. Space Technol. 18(2–3), 145–159 (2003)

    Article  Google Scholar 

  18. Liu, B., Wang, L., Jin, Y.H., Tang, F., Huang, D.X.: Improved particle swarm optimization combined with chaos. Chaos, Solitons Fractals 25(5), 1261–1271 (2005)

    Article  Google Scholar 

  19. Maidl, B., Herrenknecht, M., Maidl, U., Wehrmeyer, G.: Mechanised Shield Tunnelling. Wiley, New York (2013)

    Google Scholar 

  20. Miller, B.L., Goldberg, D.E., et al.: Genetic algorithms, tournament selection, and the effects of noise. Complex Syst. 9(3), 193–212 (1995)

    MathSciNet  Google Scholar 

  21. Ng, J.Y., Chan, A.H.: The ageing construction workforce in Hong Kong: a review. In: Proceedings of International MultiConference of Engineers and Computer Scientists 2015 (IMECS). Newswood Limited (2015)

    Google Scholar 

  22. Olsen, D., Tatum, M., Defnall, C.: How industrial contractors are handling skilled labor shortages in the United States. In: 48th ASC Annual International Conference Proceedings (2012)

    Google Scholar 

  23. Pampara, G., Franken, N., Engelbrecht, A.P.: Combining particle swarm optimisation with angle modulation to solve binary problems. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), vol. 1, pp. 89–96. IEEE (2005)

    Google Scholar 

  24. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12(1), 64–79 (2008)

    Article  Google Scholar 

  25. Soares, J., Ghazvini, M.A.F., Silva, M., Vale, Z.: Multi-dimensional signaling method for population-based metaheuristics: solving the large-scale scheduling problem in smart grids. Swarm Evol. Comput. 29, 13–32 (2016)

    Article  Google Scholar 

  26. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  27. Strasser, S., Goodman, R., Sheppard, J., Butcher, S.: A new discrete particle swarm optimization algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 53–60. ACM (2016)

    Google Scholar 

  28. Suwansawat, S., Einstein, H.H.: Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling. Tunn. Undergr. Space Technol. 21(2), 133–150 (2006)

    Article  Google Scholar 

  29. Suzuki, A.: 2016 annual report of NILIM: productivity improvement in infrastrucure development process using i-construction (2016). http://www.nilim.go.jp/english/annual/annual2016/ar2016e.html. Accessed 23 Oct 2018

  30. Syswerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann Publishers (1989)

    Google Scholar 

  31. Takahama, T., Sakai, S.: Constrained optimization by the \(\varepsilon \) constrained differential evolution with gradient-based mutation and feasible elites. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2006)

    Google Scholar 

  32. Takahama, T., Sakai, S.: Constrained optimization by \(\varepsilon \) constrained particle swarm optimizer with \(\varepsilon \)-level control. In: Abraham, A., Dote, Y., Furuhashi, T., Köppen, M., Ohuchi, A., Ohsawa, Y. (eds.) Soft Computing as Transdisciplinary Science and Technology. Advances in Soft Computing, vol. 29, pp. 1019–1029. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-32391-0_105

  33. Takahama, T., Sakai, S.: Constrained optimization by the \(\varepsilon \) constrained differential evolution with an archive and gradient-based mutation. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 1–9. IEEE (2010)

    Google Scholar 

  34. Weng, W.C., Yang, F., Elsherbeni, A.: Electromagnetics and antenna optimization using Taguchi’s method. Synth. Lect. Comput. Electromagnet. 2(1), 1–94 (2007)

    Article  Google Scholar 

  35. Yang, Z., Cai, X., Fan, Z.: Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1181–1186. ACM (2014). https://doi.org/10.1145/2598394.2610012

  36. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  37. Zhang, Z., Long, K., Wang, J., Dressler, F.: On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Commun. Surv. Tutorials 16(1), 513–537 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Education, Science, Sports and Culture, Grant–in–Aid for Scientific Research under grant #JP19H01137 and #JP19H04025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koya Ihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ihara, K., Kato, S., Nakaya, T., Ogi, T., Masuda, H. (2019). Application of PSO-Based Constrained Combinatorial Optimization to Segment Assignment in Shield Tunneling. In: van den Herik, J., Rocha, A., Steels, L. (eds) Agents and Artificial Intelligence. ICAART 2019. Lecture Notes in Computer Science(), vol 11978. Springer, Cham. https://doi.org/10.1007/978-3-030-37494-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37494-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37493-8

  • Online ISBN: 978-3-030-37494-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics