Skip to main content

Code-Tampering Defense for Internet of Things Using System Call Traces

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1139))

Included in the following conference series:

  • 453 Accesses

Abstract

This paper proposes a novel method to prevent an attack mounted by an adversary on an IoT device by executing suspicious system calls. An adversary in such cases would want to modify the behavior of an IoT device for hijacking the control by mounting malicious code. This paper uses system call traces to find out illegal accesses made on an IoT node. We develop a kernel-level processor tracing method for jeopardizing adversary’s activities. The method is rigorously tested on various IoT nodes like Raspberry Pi 3, Intel Galileo Gen 2, Arduino Uno etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bresch, C., Hély, D., Papadimitriou, A., Michelet-Gignoux, A., Amato, L., Meyer, T.: Stack redundancy to thwart return oriented programming in embedded systems. IEEE Embed. Syst. Lett. 10(3), 87–90 (2018)

    Article  Google Scholar 

  2. Ghosh, S.K., Dey, S., Mukhopadhyay, D.: Performance, security trade-offs in secure control. IEEE Embed. Syst. Lett. 11, 102–105 (2018)

    Article  Google Scholar 

  3. Habibi, J., Panicker, A., Gupta, A., Bertino, E.: DisARM: mitigating buffer overflow attacks on embedded devices. Network and System Security. LNCS, vol. 9408, pp. 112–129. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25645-0_8

    Chapter  Google Scholar 

  4. Ho, J.-W.: Efficient and robust detection of code-reuse attacks through probabilistic packet inspection in industrial iot devices. IEEE Access 6, 54343–54354 (2018)

    Article  Google Scholar 

  5. Hota, C., Shrivastava, R.K., Shipra, S.: Tamper-resistant code using optimal ROP gadgets for IoT devices. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 570–575. IEEE (2017)

    Google Scholar 

  6. Isenberg, T., Jakobs, M.-C., Pauck, F., Wehrheim, H.: Validity of software verification results on approximate hardware. IEEE Embed. Syst. Lett. 10(1), 22–25 (2017)

    Article  Google Scholar 

  7. Jovanov, I., Pajic, M.: Sporadic data integrity for secure state estimation. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 163–169. IEEE (2017)

    Google Scholar 

  8. Krishnakumar, G., Slpsk, P., Vairam, P.K., Rebeiro, C., Veezhinathan, K.L.: Gandalf: a fine-grained hardware-software co-design for preventing memory attacks. IEEE Embed. Syst. Lett. 10(3), 83–86 (2018)

    Article  Google Scholar 

  9. Li, Y., Shi, D., Chen, T.: A stackelberg-game analysis, false data injection attacks on networked control systems. IEEE Trans. Autom. Control 63, 3503–3509 (2018)

    Article  Google Scholar 

  10. Liu, J., Sun, W.: Smart attacks against intelligent wearables in people-centric Internet of Things. IEEE Commun. Mag. 54(12), 44–49 (2016)

    Article  Google Scholar 

  11. Mo, Y., Sinopoli, B.: Secure control against replay attacks. In: 2009 47th annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 911–918. IEEE (2009)

    Google Scholar 

  12. Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: WatchdogLite: hardware-accelerated compiler-based pointer checking. In: Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization, p. 175. ACM (2014)

    Google Scholar 

  13. Nickerson, J.R., Chow, S.T., Johnson, H.J.: Tamper resistant software: extending trust into a hostile environment. In: Proceedings of the 2001 Workshop on Multimedia and Security: New Challenges, pp. 64–67. ACM (2001)

    Google Scholar 

  14. Nyman, T., Ekberg, J.-E., Davi, L., Asokan, N.: CFI CaRE: hardware-supported call and return enforcement for commercial microcontrollers. In: Dacier, M., Bailey, M., Polychronakis, M., Antonakakis, M. (eds.) RAID 2017. LNCS, vol. 10453, pp. 259–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66332-6_12

    Chapter  Google Scholar 

  15. Park, J., Ivanov, R., Weimer, J., Pajic, M., Lee, I.: Sensor attack detection in the presence of transient faults. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 1–10. ACM (2015)

    Google Scholar 

  16. Shoukry, Y., Nuzzo, P., Puggelli, A., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Tabuada, P.: Secure state estimation for cyber-physical systems under sensor attacks: a satisfiability modulo theory approach. IEEE Trans. Autom. Control 62(10), 4917–4932 (2017)

    Article  MathSciNet  Google Scholar 

  17. Shrivastava, R., Hota, C., Shrivastava, P.: Protection against code exploitation using ROP and check-summing in IoT environment. In: 2017 5th International Conference on Information and Communication Technology (ICoIC7), pp. 1–6. IEEE (2017)

    Google Scholar 

  18. Tsoutsos, N.G., Maniatakos, M.: Anatomy of memory corruption attacks and mitigations in embedded systems. IEEE Embed. Syst. Lett. 10(3), 95–98 (2018)

    Article  Google Scholar 

  19. Zhao, K., Ge, L.: A survey on the internet of things security. In: 2013 Ninth International Conference on Computational Intelligence and Security, pp. 663–667. IEEE (2013)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Ministry of Electronics and Information Technology (MeitY), Govt. of India and Netherlands Organization for Scientific research (NWO), Netherlands under grant number: 13(1)/2015-CC&BT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Shrivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shrivastava, R.K., Hota, C. (2020). Code-Tampering Defense for Internet of Things Using System Call Traces. In: Rautaray, S., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2020. Communications in Computer and Information Science, vol 1139. Springer, Cham. https://doi.org/10.1007/978-3-030-37484-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37484-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37483-9

  • Online ISBN: 978-3-030-37484-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics