Skip to main content

Towards Understanding ICU Treatments Using Patient Health Trajectories

  • Conference paper
  • First Online:
Book cover Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems (KR4HC 2019, TEAAM 2019)

Abstract

Overtreatment or mistreatment of patients is a phenomenon commonly encountered in health care and especially in the Intensive Care Unit (ICU) resulting in increased morbidity and mortality. We explore the MIMIC-III intensive care unit database and conduct experiments on an interpretable feature space based on the fusion of severity subscores, commonly used to predict mortality in an ICU setting. Clustering of medication and procedure context vectors based on a semantic representation has been performed to find common and individual treatment patterns. Two-day patient health state trajectories of a cohort of congestive heart failure patients are clustered and correlated with the treatment and evaluated based on an increase or reduction of probability of mortality on the second day of stay. Experimental results show differences in treatments and outcomes and the potential for using patient health state trajectories as a starting point for further evaluation of medical treatments and interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/MIT-LCP/mimic-code.

  2. 2.

    https://github.com/caisr-hh/Dayly-SAPS-III-and-OASIS-scores-for-MIMIC-III.

References

  1. Bajor, J.M., Mesa, D.A., Osterman, T.J., Lasko, T.A.: Embedding complexity in the data representation instead of in the model: a case study using heterogeneous medical data. Manuscript submitted for publication (2018)

    Google Scholar 

  2. Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H., Chen, L.: Data visualization with multidimensional scaling. J. Comput. Graph. Stat. 17(2), 444–472 (2008)

    Article  MathSciNet  Google Scholar 

  3. Choi, E., Bahadori, M.T., Searles, E., Coffey, C., Sun, J.: Multi-layer representation learning for medical concepts. CoRR abs/1602.05568 (2016)

    Google Scholar 

  4. Choi, E., Bahadori, M.T., Sun, J.: Doctor AI: predicting clinical events via recurrent neural networks. CoRR abs/1511.05942 (2015)

    Google Scholar 

  5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  6. Ferreira, F.L., Bota, D.P., Bross, A., Mélot, C., Vincent, J.L.: Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 286(14), 1754–1758 (2001)

    Article  Google Scholar 

  7. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Article  Google Scholar 

  8. Johnson, A.E., Kramer, A.A., Clifford, G.D.: A new severity of illness scale using a subset of acute physiology and chronic health evaluation data elements shows comparable predictive accuracy. Crit. Care Med. 41(7), 1711–1718 (2013)

    Article  Google Scholar 

  9. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  10. Johnson, A.E.W.: Mortality prediction and acuity assessment in critical care. Ph.D. thesis, University of Oxford (2014)

    Google Scholar 

  11. Johnson, A.E., Stone, D.J., Celi, L.A., Pollard, T.J.: The mimic code repository: enabling reproducibility in critical care research. J. Am. Med. Inform. Assoc. 25(1), 32–39 (2018)

    Article  Google Scholar 

  12. Kennedy, C.E., Turley, J.P.: Time series analysis as input for clinical predictive modeling: modeling cardiac arrest in a pediatric ICU. Theor. Biol. Med. Model. 8, 40 (2011)

    Article  Google Scholar 

  13. Knaus, W.A., et al.: The APACHE III prognostic system: risk prediction of hospital mortality for critically hospitalized adults. Chest 100(6), 1619–1636 (1991)

    Article  Google Scholar 

  14. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on International Conference on Machine Learning, ICML 2014, vol. 32, pp. II-1188-II-1196 (2014). www.JMLR.org

  15. Le Gall, J., Lemeshow, S., Saulnier, F.: A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 270(24), 2957–2963 (1993)

    Article  Google Scholar 

  16. Le Gall, J.R., et al.: Mortality prediction using SAPS II: an update for French intensive care units. Crit. Care 9(6), R645 (2005)

    Article  Google Scholar 

  17. Leape, L.L., Berwick, D.M.: Five years after To Err Is Human: what have we learned? JAMA 293(19), 2384–2390 (2005)

    Article  Google Scholar 

  18. MacFie, C.C., Baudouin, S.V., Messer, P.B.: An integrative review of drug errors in critical care. J. Intensive Care Soc. 17(1), 63–72 (2016)

    Article  Google Scholar 

  19. Miotto, R., Li, L., Kidd, B., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)

    Article  Google Scholar 

  20. Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: \({Deepr}\): a convolutional net for medical records. IEEE J. Biomed. Health Inform. 21(1), 22–30 (2017)

    Article  Google Scholar 

  21. Pham, T., Tran, T., Phung, D., Venkatesh, S.: Predicting healthcare trajectories from medical records: a deep learning approach. J. Biomed. Inform. 69, 218–229 (2017)

    Article  Google Scholar 

  22. Ravi, P., Vijai, M.N.: Errors in ICU: how safe is the patient? A prospective observational study in a tertiary care hospital. J. Anesth. Clin. Res. 6(6), 1–7 (2015)

    Article  Google Scholar 

  23. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, May 2010

    Google Scholar 

  24. Kohn, L.T., Corrigan, J., Donaldson, M.: To Err is Human: Building a Safer Health System, vol. 6. National Academies Press, Washington (DC) (2000)

    Google Scholar 

  25. Teasdale, G., Jennett, B.: Assessment of coma and impaired consciousness: a practical scale. Lancet 304(7872), 81–84 (1974)

    Article  Google Scholar 

  26. Vincent, J.L., et al.: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European society of intensive care medicine. Intensive Care Med. 22(7), 707–710 (1996)

    Article  Google Scholar 

  27. Wenzel, R.P., et al.: Hospital-acquired infections in intensive care unit patients: an overview with emphasis on epidemics. Infect. Control 4(5), 371–375 (1983)

    Article  Google Scholar 

  28. Williams, T.A., Ho, K.M., Dobb, G.J., Finn, J.C., Knuiman, M., Webb, S.A.R.: Effect of length of stay in intensive care unit on hospital and long-term mortality of critically ill adult patients. BJA: Br. J. Anaesth. 104(4), 459–464 (2010)

    Article  Google Scholar 

  29. Ylipalosaari, P., Ala-Kokko, T.I., Laurila, J., Ohtonen, P., Syrjälä, H.: Intensive care acquired infection is an independent risk factor for hospital mortality: a prospective cohort study. Crit. Care 10(2), R66 (2006)

    Article  Google Scholar 

  30. Zimmerman, J.E., Kramer, A.A., McNair, D.S., Malila, F.M.: Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit. Care Med. 34(5), 1297–1310 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Galozy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galozy, A., Nowaczyk, S., Sant’Anna, A. (2019). Towards Understanding ICU Treatments Using Patient Health Trajectories. In: Marcos, M., et al. Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems. KR4HC TEAAM 2019 2019. Lecture Notes in Computer Science(), vol 11979. Springer, Cham. https://doi.org/10.1007/978-3-030-37446-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37446-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37445-7

  • Online ISBN: 978-3-030-37446-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics