Skip to main content

Automatic Collision Avoidance Using Deep Reinforcement Learning with Grid Sensor

  • Conference paper
  • First Online:
Proceedings of the 23rd Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2019)

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 12))

Included in the following conference series:

Abstract

This paper presents an automatic collision avoidance algorithm for multiple ships using reinforcement learning (RL). Obstacle zone by target (OZT) is used to grasp multiple ships’ dynamic information in the form of 2-dimensional areas. OZT shows a dangerous area where collisions may happen. Then a new method using a virtual sensor which is separated in a grid is proposed to detect multiple ships simultaneously. The sensor detects OZTs efficiently and provides information about where OZTs expands as a part of a state vector with a fixed dimension as inputs for a RL algorithm. I applied a deep RL algorithm. An agent of deep RL learned manoeuvre using a set of ship encounter situations called Imazu problem. The learned model can avoid all encounter situations of up to three target ships in simulations. The proposed approach can learn manoeuvre to manage both waypoint navigation and collision avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IMO takes first steps to address autonomous ships (2018). http://www.imo.org

  2. Varas, J.M., Hirdaris, S., Smith, R., Scialla, P., Caharija, W., Bhuiyan, Z., Mills, T., Naeem, W., Hu, L., Renton, I., Motson, D., Rajabally, E.: MAXCMAS project: autonomous COLREGs Compliant Ship Navigation. In: Proceedings of the 16th Conference on Computer Applications and Information Technology in the Maritime Industries 2017, pp. 454-464 (2017)

    Google Scholar 

  3. Imazu, H.: Computation of OZT by using collision course. Navigation 188, 78–81 (2014)

    Google Scholar 

  4. Imazu, H.: Evaluation method of collision risk by using true motion. Int. J. Mar. Navig. Saf. Sea Transp. (TransNav) 11(1), 65–70 (2017)

    Article  Google Scholar 

  5. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Proximal policy optimization algorithms, arXiv preprint arXiv:1707.06347 (2017)

  6. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: Proceedings of the 33rd International Conference on Machine Learning, PMLR, vol. 48, pp. 1928-1937 (2016)

    Google Scholar 

  7. Imazu, H., Koyama, T.: The optimization of the criterion for collision avoidance action-II. J. Jpn. Inst. Navig. 72, 23–30 (1985)

    Article  Google Scholar 

  8. Imazu, H., Koyama, T.: The optimization of the criterion for collision avoidance action-III. J. Jpn. Inst. Navig. 73, 19–26 (1985)

    Article  Google Scholar 

  9. Kouzuki, A., Hasegawa, K.: Automatic collision avoidance system for ships using fuzzy control. J. Kansai Soc. Nav. Arch. Jpn. 205, 1–10 (1987)

    Google Scholar 

  10. Cai, Y., Hasegawa, K.: Evaluating of marine traffic simulation system through imazu problem. In: The Proceedings of Japan Society of Naval Architecture and Ocean Engineering, vol. 17, pp. 191–194 (2013)

    Google Scholar 

  11. Imazu, H.: Research on collision avoidance manoeuvre (in Japanese). Ph.D. thesis. University of Tokyo, Japan (1987)

    Google Scholar 

  12. Hu, L., Naeem, W., Rajabally, E., Watson, G., Mills, T., Bhuiyan, Z., Salter, I.: COLREGs-compliant path planning for autonomous surface vehicles: a multi-objective optimization approach. In: 20th IFAC World Congress, vol. 50, pp. 13662–13667 (2017)

    Google Scholar 

  13. Nagasawa, A., Hara, K., Inoue, K.: The subjective difficulties of the situation of collision avoidance-I: toward the rating by simulation. J. Jpn. Inst. Navig. 79, 91–100 (1988)

    Article  Google Scholar 

  14. Nagasawa, A., Hara, K., Inoue, K., Kose, K.: The subjective difficulties of the situation of collision avoidance-II: toward the rating by simulation. J. Jpn. Inst. Navig. 88, 137–144 (1993)

    Article  Google Scholar 

  15. Taniguchi, Y., Matsuda, A., Sera, W., Terada, D., Hashimoto, H.: Validation of a ship collision avoidance algorithm in congested sea area by means of model experiment. In: The Proceedings of Japan Society of Naval Architecture and Ocean Engineering, vol. 23, pp. 627–632 (2016)

    Google Scholar 

  16. Kuwata, Y., Wolf, M.T., Zarzhitsky, D., Huntsberger, T.L.: Safe maritime autonomous navigation with COLREGs, using velocity obstacles. IEEE J. Ocean. Eng. 39, 110–119 (2014)

    Article  Google Scholar 

  17. Mitsubori, K., Kamio, T., Tanaka, T.: Finding the course and collision avoidance based on reinforcement learning algorithm. Navigation 170, 26–31 (2009)

    Google Scholar 

  18. Shen, H., Hashimoto, H., Matsuda, A., Taniguchi, Y., Terada, D., Guo, C.: Automatic collision avoidance of multiple ships based on deep Q-learning. Appl. Ocean Res. 86, 268–288 (2019)

    Article  Google Scholar 

  19. Rachman, A.S.A.: 3D-LIDAR multi object tracking for autonomous driving: multi-target detection and tracking under urban road uncertainties, Master thesis, Delft University of Technology, Netherlands (2017)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations, International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  21. DeepX, Inc.: Machina a library for real-world deep reinforcement learning (2019). https://machina-rl.org/

  22. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic Differentiation in PyTorch, NIPS Autodiff Workshop (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Sawada .

Editor information

Editors and Affiliations

A Appendix

A Appendix

The configuration of the networks and the hyper-parameters of PPO in this paper are shown in Table 3. Machina supports only Ubuntu and doesn’t supports Windows officially. Therefore, some implementations in the machina code such as the use of multiprocessing in Pytorch and Python and the log output format have been modified for Windows.

Table 3. Hyper-parameters values for PPO

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sawada, R. (2020). Automatic Collision Avoidance Using Deep Reinforcement Learning with Grid Sensor. In: Sato, H., Iwanaga, S., Ishii, A. (eds) Proceedings of the 23rd Asia Pacific Symposium on Intelligent and Evolutionary Systems. IES 2019. Proceedings in Adaptation, Learning and Optimization, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-37442-6_3

Download citation

Publish with us

Policies and ethics