Skip to main content

City-scale Modeling of Urban Heat Islands for Kolkata

  • Chapter
  • First Online:
Climate Change, Hazards and Adaptation Options

Abstract

The Kolkata metropolitan area (KMA) is one of the sub-tropical urban environments experiencing swift and incessant urbanization process that has resulted in significant energetic differentiation in rural-urban domain as advection of heat wave and urban heat island (UHI) effect, it has to persuade on urban climate, biological environment and socio-economic atmosphere of urban society. The preparation of UHI susceptibility zonation is the preliminary measure for UHI risk assessment and hazard mitigation. The present study has been adopted the city-scale modeling of UHI by means of geographic information system (GIS) based statistical models for building the UHI susceptibility zonation using remote sensing (RS) data and other ancillary data. Initially, the UHI inventory map with 350 random pixels were extracted from mono-window algorithm (MWA) derived land surface temperature (LST) map using e-cognition approach. As such, UHI locations in LST map were then split into a ratio of 70/30 for building the UHI models and model validations. Finally, a spatial database of socio-economic, structural and radiative drivers with nine UHI conditioning factors has been prepared, including population distribution, land use and land cover (LULC), building material, building height, building roof type, building roof reflectance, building age, building association and road pavement and these database were extracted from multi-spectral scanning (MSS), thematic mapper-5 (TM-5) of Landsat images, Google Earth (GE) historical images and OpenStreetMap (OSM) with intensive rapid visual field survey (RVFS). The geo-spatial relationships between UHI inventory’s pixels locations and nine conditioning thematic factors were recognized by using four GIS-based statistical models i.e. analytical hierarchy process (AHP), two-class kernel logistic regression (KLR), support vectors machines (SVM) and spatial multi-criteria evaluation (SMCE) model. These models were constructed based on of training dataset and model-derived results have been validated and compared with the area under receiver operating characteristic (ROC) curve, kappa index and five different statistical evaluation measures to corroborate the noteworthy differences on the overall performance. The results of goodness of fit are of 86, 87, 85 and 89% and corresponding prediction capabilities are of 81, 85, 82 and 87% for AHP, KLR, SVM and SMCE models respectively. The statistical measures show that the SMCE model gives up overall better performance and precise results than the AHP, KLR and SVM models. The KLR and AHP models have produced to some extent better results than the SVM model in provisions of positive spatial prediction values. Hence, the study revealed that SMCE and KLR are the promising physical data mining approach to be considered to map the spatiality of UHI susceptibility zonation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal AK, Dwivedi S, Ghanshyam A (2018) Summer heat: making a consistent health impact. Indian J Occup Environ Med 22:57–58. https://doi.org/10.4103/ijoem.IJOEM_94_17

    Article  Google Scholar 

  • Akbari H, Konopacki S (2005) Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy 33(6):721–756

    Article  Google Scholar 

  • Akbari H, Bretz S, Kurn DM, Hanford J (1997) Peak power and cooling energy savings of high-albedo roofs. Energy Build 25(2):117–126

    Article  Google Scholar 

  • Akbari H, Konopacki S, Pomerantz M (1999) Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States. Energy 24(5):391–407

    Article  Google Scholar 

  • Akbari H, Rose LS, Taha H (2003) Analyzing the land cover of an urban environment using high-resolution orthophotos. Landsc Urban Plan 63(1):1–14

    Article  Google Scholar 

  • Ali-Toudert F, Mayer H (2006) Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build Environ 41(2):94–108

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26

    Article  Google Scholar 

  • Arsanjani JJ, Helbich M, Kainz W, Boloorani AD (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf 21:265–275

    Article  Google Scholar 

  • Berdahl P, Bretz S (1994) Spectral solar reflectance of various roof materials. In: Cool building and paving materials workshop

    Google Scholar 

  • Bhaskaran S, Paramananda S, Ramnarayan M (2010) Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl Geogr 30(4):650–665

    Article  Google Scholar 

  • Bhatta B (2009) Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India. Int J Remote Sens 30(18):4733–4746

    Article  Google Scholar 

  • Bisai D, Chatterjee S, Khan A (2014) Detection of recognizing events in lower atmospheric temperature time series (1941-2010) of Midnapore Weather Observatory, West Bengal, India. J Environ Earth Sci 4(3):61–66

    Google Scholar 

  • Bishop YMM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis theory and practice. MIT Press, Carnbridge, Massachusetts, p 557

    Google Scholar 

  • BMTPC (1997) Vulnerability atlas of India: earthquake, windstorm and flood hazard maps and damaged risk to housing, ministry of housing and urban poverty alleviation, Government of India, First Revision

    Google Scholar 

  • Bottyán Z, Unger J (2003) A multiple linear statistical model for estimating the mean maximum urban heat island. Theoret Appl Climatol 75(3–4):233–243

    Article  Google Scholar 

  • Bretz SE, Akbari H (1997) Long-term performance of high-albedo roof coatings. Energy Build 25(2):159–167

    Article  Google Scholar 

  • Bretz S, Akbari H, Rosenfeld A (1998) Practical issues for using solar-reflective materials to mitigate urban heat islands. Atmos Environ 32(1):95–101

    Article  Google Scholar 

  • Cawley GC, Talbot NL (2008) Efficient approximate leave-one-out cross-validation for kernel logistic regression. Mach Learn 71(2–3):243–264

    Article  Google Scholar 

  • Chang CI, Du Q, Sun TL, Althouse ML (1999) A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. Geosci Remote Sens IEEE Trans On 37(6):2631–2641

    Article  Google Scholar 

  • Chatterjee S, Bisai D, Khan A (2013) Detection of approximate potential trend turning points in temperature time series (1941–2010) for Asansol weather observation station, West Bengal. Atmos Clim Sci, India, p 2014

    Google Scholar 

  • Chen CM, Hepner GF (2001) Investigation of imaging spectroscopy for discriminating urban land covers and surface materials (Doctoral dissertation, Department of Geography, University of Utah)

    Google Scholar 

  • Chen XL, Zhao HM, Li PX, Yin ZY (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2):133–146

    Article  Google Scholar 

  • Clark RN, Swayze G, Heidebrecht K, Goetz AF, Green RO (1993) Comparison of methods for calibrating AVIRIS data to ground reflectance. In: 5th annual airborne geoscience workshop. AVIRIS. Jet Propulsion Laboratory, Pasadena, Calif, pp 35–36

    Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46

    Article  Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data: principles and applications. Lewis Publishers, Boca Raton, Fla

    Google Scholar 

  • Congalton R, Mead RA (1983) A quantitative method to test for consistency and correctness in photointerpretation. Photogra Eng Remote Sens 49(1):69–74

    Google Scholar 

  • DeFries R (2008) Terrestrial vegetation in the coupled human-earth system: contributions of remote sensing. Annu Rev Environ Resour 33:369–390

    Article  Google Scholar 

  • DeFries R, Pandey D (2010) Urbanization, the energy ladder and forest transitions in India’s emerging economy. Land Use Policy 27(2):130–138

    Article  Google Scholar 

  • Fujibe F (2009) Detection of urban warming in recent temperature trends in Japan. Int J Climatol 29(12):1811–1822

    Article  Google Scholar 

  • Geneletti D, Gorte BGH (2003) A method for object-oriented land cover classification combining Landsat TM data and aerial photographs. Int J Remote Sens 24(6):1273–1286

    Article  Google Scholar 

  • Gibson PJ, Power CH, Goldin SE, Rudahl KT (2000) Introductory remote sensing: digital image processing and applications, vol 11. Routledge, London, UK

    Google Scholar 

  • Gopal S, Tang X, Phillips N, Nomack M, Pasquarella V, Pitts J (2016) Characterizing urban landscapes using fuzzy sets. Comput Environ Urban Syst 57:212–223

    Article  Google Scholar 

  • Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, … Olah MR (1998) Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ 65(3):227–248

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760

    Article  Google Scholar 

  • Heatwave and Health: Guidance on warning system development (2015) WHO and WMO Geneva. https://www.who.int/globalchange/publications/WMO_WHO_Heat_Health_Guidance_2015.pdf. Assessed on 17 July 19

  • Heaviside C, Vardoulakis S, Cai X-M (2016) Attribution of mortality to the urban heat island during heatwaves in the West Midlands. UK Environ Health 15(Suppl 1):27. https://doi.org/10.1186/s12940-016-0100-9

    Article  Google Scholar 

  • Heiden U, Roessner S, Segl K, Kaufmann H (2001) Analysis of spectral signatures of urban surfaces for their identification using hyperspectral HyMap data. In: Remote sensing and data fusion over urban areas, IEEE/ISPRS joint workshop 2001, IEEE, pp 173–177

    Google Scholar 

  • Hepner GF, Houshmand B, Kulikov I, Bryant N (1998) Investigation of the integration of AVIRIS and IFSAR for urban analysis. Photogram Eng Remote Sens 64(8):813–820

    Google Scholar 

  • Herold M, Gardner ME, Roberts DA (2003) Spectral resolution requirements for mapping urban areas. Geosci Remote Sens IEEE Trans On 41(9):1907–1919

    Article  Google Scholar 

  • Hong H, Pradhan B, Xu C, Bui DT (2015) Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. CATENA 133:266–281

    Article  Google Scholar 

  • Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ 114(3):504–513

    Article  Google Scholar 

  • Jensen JR (1986) Introductory digital image processing: a remote sensing perspective. University of South Carolina, Columbus

    Google Scholar 

  • Jimenez LO, Landgrebe DA (1999) Hyperspectral data analysis and supervised feature reduction via projection pursuit. Geosci Remote Sens IEEE Trans On 37(6):2653–2667

    Article  Google Scholar 

  • Jones PD, Lister DH, Li Q (2008) Urbanization effects in large‐scale temperature records, with an emphasis on China. J Geophys Res Atmos 113(D16)

    Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423(6939):528–531

    Article  Google Scholar 

  • Khan A, Chatterjee S (2016) Numerical simulation of urban heat island intensity under urban–suburban surface and reference site in Kolkata, India. Model Earth Syst Environ 2(2):1–11

    Article  Google Scholar 

  • Khan A, Chatterjee S, Bisai D, Barman NK (2014) Analysis of change point in surface temperature time series using cumulative sum chart and bootstrapping for Asansol weather observation station, West Bengal, India. Am J Clim Chang 3(1):83

    Article  Google Scholar 

  • Konopacki SJ, Akbari H (2001) Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin. Lawrence Berkeley National Laboratory

    Google Scholar 

  • Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley, New Jersey

    Google Scholar 

  • Landgrebe D (2000) On the relationship between class definition precision and classification accuracy in hyperspectral analysis. In: Geoscience and remote sensing symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 international, IEEE, vol 1, pp 147–149

    Google Scholar 

  • Leal Filho W, Echevarria Icaza L, Emanche VO, Quasem Al-Amin A (2017) An evidence-based review of impacts, strategies and tools to mitigate urban heat islands. Int J Environ Res Public Health 14. https://doi.org/10.3390/ijerph14121600

    Article  Google Scholar 

  • Levinson R, Akbari H, Reilly JC (2007) Cooler tile-roofed buildings with near-infrared-reflective non-white coatings. Build Environ 42(7):2591–2605

    Article  Google Scholar 

  • Luber G, McGeehin M (2008) Climate change and extreme heat events. Am J Prev Med Theme Issue Clim Chang Health Public 35:429–435. https://doi.org/10.1016/j.amepre.2008.08.021

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, London

    Google Scholar 

  • Mavrogianni A, Davies M, Batty M, Belcher S, Bohnenstengel S, Carruthers D, Chalabi Z, Croxford B, Demanuele C, Evans S, Giridharan R, Hacker J, Hamilton I, Hogg C, Hunt J, Kolokotroni M, Martin C, Milner J, Rajapaksha I, Ridley I, Steadman J, Stocker J, Wilkinson P, Ye Z (2011) The comfort, energy and health implications of London’s urban heat island. Build Serv Eng Res Technol 32:35–52. https://doi.org/10.1177/0143624410394530

    Article  Google Scholar 

  • Mirzaei PA (2015) Recent challenges in modeling of urban heat island. Sustain Cities Soc 19:200–206

    Article  Google Scholar 

  • Morano P, Locurcio M, Tajani F, Guarini MR (2014) Urban redevelopment: a multi-criteria valuation model optimized through the fuzzy logic. In: Computational science and its applications–ICCSA 2014, pp 161–175. Springer, Cham

    Google Scholar 

  • Nandy DR (2007) Need for seismic microzonation of Kolkata megacity. In: Proceedings of workshop on microzonation, Indian Institute of science, Bangalore, India, vol 2627

    Google Scholar 

  • Nath SK, Adhikari MD, Devaraj N, Maiti SK (2015) Seismic vulnerability and risk assessment of Kolkata City, India. Nat Hazards Earth Syst Sci 15(6):1103–1121

    Article  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108(455):1–24

    Google Scholar 

  • Oke TR (1988) The urban energy balance. Prog Phys Geogr 12(4):471–508

    Article  Google Scholar 

  • Parker DE (2010) Urban heat island effects on estimates of observed climate change. Wiley Interdiscip Rev Clim Chang 1(1):123–133

    Article  Google Scholar 

  • Pielke RA, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, …, Reichstein M (2011). Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip Rev Clim Chang 2(6):828–850

    Google Scholar 

  • Pourghasemi H, Moradi H, Aghda SF, Gokceoglu C, Pradhan B (2014) GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab J Geosci 7:1857–1878

    Article  Google Scholar 

  • Pourghasemi H, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed. Iran Nat Hazards 63:965–996

    Article  Google Scholar 

  • Price JC (1997) Spectral band selection for visible-near infrared remote sensing: spectral-spatial resolution tradeoffs. Geosci Remote Sens IEEE Trans On 35(5):1277–1285

    Article  Google Scholar 

  • Price JC (1998) An approach for analysis of reflectance spectra. Remote Sens Environ 64(3):316–330

    Article  Google Scholar 

  • Qin Z, Karnieli A, Berliner P (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens 22:3719–3746

    Article  Google Scholar 

  • Rahman R, Saha SK (2008) Remote sensing, spatial multi criteria evaluation (SMCE) and analytical hierarchy process (AHP) in optimal cropping pattern planning for a flood prone area. J Spat Sci 53(2):161–177

    Article  Google Scholar 

  • Rizwan AM, Dennis LY, Chunho LIU (2008) A review on the generation, determination and mitigation of Urban Heat Island. J Environ Sci 20(1):120–128

    Article  Google Scholar 

  • Roberts DA, Green RO, Adams JB (1997) Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS. Remote Sens Environ 62(3):223–240

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resources allocation. McGraw, New York

    Google Scholar 

  • Saaty TL, Vargas LG (2012) Models, methods, concepts and applications of the analytic hierarchy process (vol 175). Springer, Cham

    Google Scholar 

  • Shahabi H, Hashim M (2015) Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Sci Rep 5(9899). https://doi.org/10.1038/srep09899

  • Shahmohamadi P, Che-Ani AI, Etessam I, Maulud KNA, Tawil NM (2011) Healthy environment: the need to mitigate urban heat island effects on human health. In: Procedia engineering, 2nd international building control conference vol 20, pp 61–70. https://doi.org/10.1016/j.proeng.2011.11.139

    Article  Google Scholar 

  • Sharma R, Hooyberghs H, Lauwaet D, De Ridder K (2019) Urban heat island and future climate change—implications for Delhi’s heat. J Urban Health 96:235–251. https://doi.org/10.1007/s11524-018-0322-y

    Article  Google Scholar 

  • Sharma D, Bharat A (2009) Urban heat island effect—causes, impacts, methods of measurement and mitigation options. Inst Town PlanS, India J 6–2:69–77. https://www.researchgate.net/publication/265477727_Urban_Heat_Island_Effect_-_Causes_Impacts_Methods_of_Measurement_and_Mitigation_Options. Accessed 17 July 19

  • Small C (2002) Multitemporal analysis of urban reflectance. Remote Sens Environ 81(2):427–442

    Article  Google Scholar 

  • Stone B (2007) Urban and rural temperature trends in proximity to large US cities: 1951–2000. Int J Climatol 27(13):1801–1807

    Article  Google Scholar 

  • Story M, Congalton RG (1986) Accuracy assessment-A user\’s perspective. Photogramm Eng Remote Sens 52(3):397–399

    Google Scholar 

  • Synnefa A, Santamouris M, Akbari H (2007) Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy Build 39(11):1167–1174

    Article  Google Scholar 

  • Synnefa A, Santamouris M, Livada I (2006) A study of the thermal performance of reflective coatings for the urban environment. Sol Energy 80(8):968–981

    Article  Google Scholar 

  • Taha H, Akbari H, Rosenfeld A, Huang J (1988) Residential cooling loads and the urban heat island-the effects of albedo. Build Environ 23(4):271–283

    Article  Google Scholar 

  • Touchaei AG, Wang Y (2015) Characterizing urban heat island in Montreal (Canada)-Effect of urban morphology. Sustain Cities Soc 19:395–402

    Article  Google Scholar 

  • Tran H, Uchihama D, Ochi S, Yasuoka Y (2006) Assessment with satellite data of the urban heat island effects in Asian mega cities. Int J Appl Earth Obs Geoinf 8(1):34–48

    Article  Google Scholar 

  • US EPA, O (2014) Heat Island Impacts [WWW Document]. US EPA. https://www.epa.gov/heat-islands/heat-island-impacts Accessed 17 June 19

  • Vapnik VN, Vapnik V (1998) Statistical learning theory, vol 1. Wiley, New York

    Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384

    Article  Google Scholar 

  • Wan Z (2008) New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens Environ 112(1):59–74

    Article  Google Scholar 

  • Wang Y, Akbari H (2014) Effect of sky view factor on outdoor temperature and comfort in Montreal. Environ Eng Sci 31(6):272–287

    Article  Google Scholar 

  • Witten IH, Frank E, Mark AH (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, Burlington, USA

    Google Scholar 

  • Xu L, Li J, Brenning A (2014) A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery. Remote Sens Environ 141:14–23

    Article  Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594

    Article  Google Scholar 

  • Zhang Q, Wang J, Peng X, Gong P, Shi P (2002) Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data. Int J Remote Sens 23(15):3057–3078

    Article  Google Scholar 

  • Zhou L, Dickinson RE, Tian Y, Fang J, Li Q, Kaufmann RK, … Myneni RB (2004) Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci U S A 101(26):9540–9544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansar Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Chatterjee, S., Filho, W.L., Khatun, R., Dinda, A., Minhas, A. (2020). City-scale Modeling of Urban Heat Islands for Kolkata. In: Leal Filho, W., Nagy, G., Borga, M., Chávez Muñoz, P., Magnuszewski, A. (eds) Climate Change, Hazards and Adaptation Options. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-030-37425-9_5

Download citation

Publish with us

Policies and ethics