Skip to main content

Next Frame Prediction Using Flow Fields

  • Conference paper
  • First Online:
Data Science: From Research to Application (CiDaS 2019)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 45))

  • 1039 Accesses

Abstract

Next frame prediction is the challenging task in computer vision and video prediction. Despite the longtime studies in video processing, the next frame prediction problem is rarely investigated and it is at its beginning. In next frame prediction, the main goal is to design a model which automatically generates the next frame using a sequence of previous frames. In videos, in most cases, the large portion of the current frame is similar to the previous frames and only a small portion of the frame has a motion field. This leads us to utilize the optic flow field. To do so, Laplacian pyramid of convolutional networks and adversarial learning are used to predict simultaneously the optic flow and the gray content of the next frame. To evaluate the proposed approach, it is applied on UCF101 dataset. The obtained results show that our approach achieves a better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. In: Readings in Computer Vision, pp. 671–679. Elsevier (1987)

    Google Scholar 

  2. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a Matlab-like environment for machine learning. In: BigLearn, NIPS Workshop, No. EPFL-CONF-192376 (2011)

    Google Scholar 

  3. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015)

    Google Scholar 

  4. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction through video prediction. In: Advances in Neural Information Processing Systems, pp. 64–72 (2016)

    Google Scholar 

  5. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing systems, pp. 2672–2680 (2014)

    Google Scholar 

  6. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2366–2369. IEEE (2010)

    Google Scholar 

  7. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  8. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  9. Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 14–29 (2016)

    Article  Google Scholar 

  10. Kosaka, A., Kak, A.C.: Fast vision-guided mobile robot navigation using model-based reasoning and prediction of uncertainties. CVGIP: Image Underst. 56(3), 271–329 (1992)

    Article  Google Scholar 

  11. Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104 (2016)

  12. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision (1981)

    Google Scholar 

  13. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016)

    Google Scholar 

  14. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, pp. 807–814 (2010)

    Google Scholar 

  15. Oh, J., Guo, X., Lee, H., Lewis, R.L., Singh, S.: Action-conditional video prediction using deep networks in Atari games. In: Advances in Neural Information Processing Systems, pp. 2863–2871 (2015)

    Google Scholar 

  16. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2 (2017)

    Google Scholar 

  17. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604 (2014)

  18. Schmidhuber, J., Hochreiter, S.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  19. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. CoRR, abs/1212.0402 (2012)

    Google Scholar 

  20. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: ICML, pp. 843–852 (2015)

    Google Scholar 

  21. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 98–106 (2016)

    Google Scholar 

  22. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances In Neural Information Processing Systems, pp. 613–621 (2016)

    Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Razzaghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pazoki, R., Razzaghi, P. (2020). Next Frame Prediction Using Flow Fields. In: Bohlouli, M., Sadeghi Bigham, B., Narimani, Z., Vasighi, M., Ansari, E. (eds) Data Science: From Research to Application. CiDaS 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-37309-2_19

Download citation

Publish with us

Policies and ethics