Skip to main content

Predicting Liver Transplantation Outcomes Through Data Analytics

  • Conference paper
  • First Online:
Data Science: From Research to Application (CiDaS 2019)

Abstract

Computer-based learning methods in medical contexts have attracted a great deal of attention recently. Organ transplantation is one of the key areas where prognosis models are being used for predicting the patients’ survival. The only treatment for patients who suffer from liver failure is transplantation. The aim of the present study is to model the patients’ survival prediction as well as to recognize the most significant attributes on survival after liver transplantation. To address the issue of the imbalanced dataset, a combination of two techniques has been considered to evaluate the result; under-sampling and over-sampling techniques. Decision Tree (DT) and K Nearest Neighbor (KNN) models together with Artificial Neural Network (ANN) have been utilized on the dataset separately to define two-year mortality of patients after liver transplantation using the dataset of Iran Ministry of Health and Medical Education (MOHME). By using Genetic Algorithm (GA), it has been shown that 13 attributes have a strong impact on survival prediction in the case of liver transplant recipients. We also compared three classification models using Receiver Operating Characteristic (ROC) curve and other various performance measures. Moreover, findings of the proposed method have improved the results of previous predictions; Using Decision Tree method, roughly in 80% of the transplantation outcomes have been predicted correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song, A.T.W., Avelino-Silva, V.I., Pecora, R.A.A., Pugliese, V., D’Albuquerque, L.A.C., Abdala, E.: Liver transplantation: fifty years of experience. World J. Gastroenterol. WJG 20(18), 5363 (2014)

    Article  Google Scholar 

  2. Kamath, P.S., Wiesner, R.H., Malinchoc, M., Kremers, W., Therneau, T.M., Kosberg, C.L., D’Amico, G., Dickson, E.R., Kim, W.R.: A model to predict survival in patients with end-stage liver disease. Hepatology 33(2), 464–470 (2001)

    Article  Google Scholar 

  3. Cucchetti, A., Vivarelli, M., Heaton, N.D., Phillips, S., Piscaglia, F., Bolondi, L., La Barba, G., Foxton, M.R., Rela, M., O’Grady, J.: Artificial neural network is superior to MELD in predicting mortality of patients with end-stage liver disease. Gut 56(2), 253–258 (2007)

    Article  Google Scholar 

  4. Su, C.-J., Wu, C.-Y.: JADE implemented mobile multi-agent based, distributed information platform for pervasive health care monitoring. Appl. Soft Comput. 11(1), 315–325 (2011)

    Article  Google Scholar 

  5. Mansingh, G., Osei-Bryson, K.-M., Asnani, M.: Exploring the antecedents of the quality of life of patients with sickle cell disease: using a knowledge discovery and data mining process model-based framework. Heal. Syst. 5(1), 52–65 (2016)

    Article  Google Scholar 

  6. Doyle, H.R., Marino, I.R., Jabbour, N., Zetti, G., McMichael, J., Mitchell, S., Fung, J., Starzl, T.E.: Early death or retransplantation in adults after orthotopic liver transplantation: can outcome be predicted? 1. Transplantation 57(7), 1028 (1994)

    Article  Google Scholar 

  7. Doyle, H.R., Dvorchik, I., Mitchell, S., Marino, I.R., Ebert, F.H., McMichael, J., Fung, J.J.: Predicting outcomes after liver transplantation. A connectionist approach. Ann. Surg. 219(4), 408 (1994)

    Article  Google Scholar 

  8. Marsh, J.W., Dvorchik, I., Subotin, M., Balan, V., Rakela, J., Popechitelev, E.P., Subbotin, V., Casavilla, A., Carr, B.I., Fung, J.J.: The prediction of risk of recurrence and time to recurrence of hepatocellular carcinoma after orthotopic liver transplantation: a pilot study. Hepatology 26(2), 444–450 (1997)

    Article  Google Scholar 

  9. Khosravi, B., Pourahmad, S., Bahreini, A., Nikeghbalian, S., Mehrdad, G.: Five years survival of patients after liver transplantation and its effective factors by neural network and cox proportional hazard regression models. Hepat. Mon. 15(9), e25164 (2015)

    Article  Google Scholar 

  10. Raji, C.G., Chandra, S.S.V.: Predicting the survival of graft following liver transplantation using a nonlinear model. J. Public Heal. 24(5), 443–452 (2016)

    Article  Google Scholar 

  11. Dorado-Moreno, M., Pérez-Ortiz, M., Gutiérrez, P.A., Ciria, R., Briceño, J., Hervás-Martínez, C.: Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artif. Intell. Med. 77, 1–11 (2017)

    Article  Google Scholar 

  12. Perez-Ortiz, M., Gutiérrez, P.A., Ayllón-Terán, M.D., Heaton, N., Ciria, R., Briceño, J., Hervás-Martínez, C.: Synthetic semi-supervised learning in imbalanced domains: constructing a model for donor-recipient matching in liver transplantation. Knowl.-Based Syst. 123, 75–87 (2017)

    Article  Google Scholar 

  13. Busuttil, R.W., Tanaka, K.: The utility of marginal donors in liver transplantation. Liver Transplant. 9(7), 651–663 (2003)

    Article  Google Scholar 

  14. Briceno, J., Solorzano, G., Pera, C.: A proposal for scoring marginal liver grafts. Transpl. Int. 13(1), S249–S252 (2000)

    Article  Google Scholar 

  15. Pérez-Ortiz, M., Cruz-Ramírez, M., Ayllón-Terán, M.D., Heaton, N., Ciria, R., Hervás-Martínez, C.: An organ allocation system for liver transplantation based on ordinal regression. Appl. Soft Comput. 14, 88–98 (2014)

    Article  Google Scholar 

  16. Maalouf, M., Siddiqi, M.: Weighted logistic regression for large-scale imbalanced and rare events data. Knowl.-Based Syst. 59, 142–148 (2014)

    Article  Google Scholar 

  17. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 9, 1263–1284 (2008)

    Google Scholar 

  18. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  19. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. (Ny) 250, 113–141 (2013)

    Article  Google Scholar 

  20. Yen, S.-J., Lee, Y.-S.: Cluster-based sampling approaches to imbalanced data distributions. In: International Conference on Data Warehousing and Knowledge Discovery, pp. 427–436 (2006)

    Chapter  Google Scholar 

  21. Zhang, Y.-P., Zhang, L.-N., Wang, Y.-C.: Cluster-based majority under-sampling approaches for class imbalance learning. In: 2010 2nd IEEE International Conference on Information and Financial Engineering (ICIFE), pp. 400–404 (2010)

    Google Scholar 

  22. García, S., Herrera, F.: Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy. Evol. Comput. 17(3), 275–306 (2009)

    Article  MathSciNet  Google Scholar 

  23. Selvakuberan, K., Indradevi, M., Rajaram, R.: Combined Feature Selection and classification – a novel approach for the categorization of web pages. UK J. Inf. Comput. Sci. 3(2), 83–89 (2008)

    Google Scholar 

  24. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    Article  Google Scholar 

  25. Zhang, M., Yin, F., Chen, B., Li, Y.P., Yan, L.N., Wen, T.F., Li, B.: Pretransplant prediction of posttransplant survival for liver recipients with benign end-stage liver diseases: a nonlinear model. PLoS ONE 7(3), e31256 (2012)

    Article  Google Scholar 

  26. Podgorelec, V., Kokol, P., Stiglic, B., Rozman, I.: Decision trees: an overview and their use in medicine. J. Med. Syst. 26(5), 445–463 (2002)

    Article  Google Scholar 

  27. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  28. Santos, M.S., Soares, J.P., Abreu, P.H., Araujo, H., Santos, J.: Cross-validation for imbalanced datasets: avoiding overoptimistic and overfitting approaches. IEEE Comput. Intell. Mag. 13(4), 59–76 (2018)

    Article  Google Scholar 

  29. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. ICML 97, 179–186 (1997)

    Google Scholar 

  30. Hido, S., Kashima, H., Takahashi, Y.: Roughly balanced bagging for imbalanced data. Stat. Anal. Data Min. ASA Data Sci. J. 2(5–6), 412–426 (2009)

    Article  MathSciNet  Google Scholar 

  31. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  32. Moreno, R., Berenguer, M.: Post-liver transplantation medical complications. Ann. Hepatol. 5(2), 77–85 (2006)

    Article  Google Scholar 

  33. Máthé, Z., Paul, A., Molmenti, E.P., Vernadakis, S., Klein, C.G., Beckebaum, S., Treckmann, J.W., Cicinnati, V.R., Kóbori, L., Sotiropoulos, G.C.: Liver transplantation with donors over the expected lifespan in the model for end-staged liver disease era: is Mother Nature punishing us? Liver Int. 31(7), 1054–1061 (2011)

    Article  Google Scholar 

  34. Sharma, R., Kashyap, R., Jain, A., Safadjou, S., Graham, M., Dwivedi, A.K., Orloff, M.: Surgical complications following liver transplantation in patients with portal vein thrombosis—a single-center perspective. J. Gastrointest. Surg. 14(3), 520–527 (2010)

    Article  Google Scholar 

  35. Tinti, F., Mitterhofer, A.P., Muiesan, P.: Liver transplantation: role of immunosuppression, renal dysfunction and cardiovascular risk factors. Minerva Chir. 67(1), 1–13 (2012)

    Google Scholar 

  36. Santos, C.A.Q., Brennan, D.C., Fraser, V.J., Olsen, M.A.: Incidence, risk factors, and outcomes of delayed-onset cytomegalovirus disease in a large, retrospective cohort of heart transplant recipients. Transpl. Proc. 46(10), 3585–3592 (2014)

    Article  Google Scholar 

  37. Fallon, M.B., Krowka, M.J., Brown, R.S., Trotter, J.F., Zacks, S., Roberts, K.E., Shah, V.H., Kaplowitz, N., Forman, L., Wille, K.: Impact of hepatopulmonary syndrome on quality of life and survival in liver transplant candidates. Gastroenterology 135(4), 1168–1175 (2008)

    Article  Google Scholar 

  38. Dreyzin, A., Lunz, J., Venkat, V., Martin, L., Bond, G.J., Soltys, K.A., Sindhi, R., Mazariegos, G.V.: Long-term outcomes and predictors in pediatric liver retransplantation. Pediatr. Transplant. 19(8), 866–874 (2015)

    Article  Google Scholar 

  39. Cucchetti, A., Piscaglia, F., Grigioni, A.D., Ravaioli, M., Cescon, M., Zanello, M., Grazi, G.L., Golfieri, R., Grigioni, W.F., Pinna, A.D.: Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificial neural network: a pilot study. J. Hepatol. 52(6), 880–888 (2010)

    Article  Google Scholar 

  40. Ho, W.-H., Lee, K.-T., Chen, H.-Y., Ho, T.-W., Chiu, H.-C.: Disease-free survival after hepatic resection in hepatocellular carcinoma patients: a prediction approach using artificial neural network. PLoS ONE 7(1), e29179 (2012)

    Article  Google Scholar 

  41. Chi, C.-L., Street, W.N., Wolberg, W.H.: Application of artificial neural network-based survival analysis on two breast cancer datasets. In: AMIA Annual Symposium Proceedings, p. 130 (2007)

    Google Scholar 

  42. Ansari, D., Nilsson, J., Andersson, R., Regnér, S., Tingstedt, B., Andersson, B.: Artificial neural networks predict survival from pancreatic cancer after radical surgery. Am. J. Surg. 205(1), 1–7 (2013)

    Article  Google Scholar 

  43. Hoot, N.R.: Models to Predict Survival After Liver Transplantation (2005)

    Google Scholar 

  44. Brier, M.E., Ray, P.C., Klein, J.B.: Prediction of delayed renal allograft function using an artificial neural network. Nephrol. Dial. Transplant. 18(12), 2655–2659 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Saman Pishvaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kargar, B., Gazerani, V.G., Pishvaee, M.S. (2020). Predicting Liver Transplantation Outcomes Through Data Analytics. In: Bohlouli, M., Sadeghi Bigham, B., Narimani, Z., Vasighi, M., Ansari, E. (eds) Data Science: From Research to Application. CiDaS 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-37309-2_12

Download citation

Publish with us

Policies and ethics