Skip to main content

Climate Change Effects on the Development of Six Pristimantis Frog Species in Ecuador

  • Conference paper
  • First Online:
Technology, Sustainability and Educational Innovation (TSIE) (TSIE 2019)

Abstract

Ecuador is regarded as being a mega-diverse country despite its limited land surface; it is home to around 602 amphibian species, of which 256 are endemic. However, Ecuador is also one of the countries that has a large number of endangered species, one of genus Pristimantis. Pristimantipopulation decline is attributed to synergy factors, such as pathogen outbreaks, habitat loss and climate change. The aim of this study is to generate potential distribution models for six Andean species belonging to the Pristimantis genus under different climate change scenarios. Potential distribution models were performed with bioclimatic variables together with each species records based on MaxEnt Entropy Models. The models’ quality was evaluated by AUC values, and the last step was the identification of highly responsive areas resulting in the most relevant to the preservation of the species included in this study. Categorization of MaxEnt research models are as follows: “Satisfactory” or “Excellent”. Predicted areas for the six species comply with suitable requirements for their subsistence. Potential future distribution shows the negative effects of climate change to include RCP 4.5 and RCP 8.5 environments, except for P. festae, which has a higher distribution area of 5.3% within RCP 4.5 and 6.3% at RCP 8.5. Protected areas partially contribute to species preservation, although 92% of P. cryophilius and 80% of P. festae specimens recorded were found within protected areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ron, S., Merino-Viteri, A., y Ortiz, D.: Anfibios del Ecuador. Museo de Zoología, Pontificia Universidad Católica del Ecuador (2018). https://bioweb.bio/faunaweb/amphibiaweb/2018/09/20

  2. Hof, C., Araújo, M., Jetz., W., y Rahbek C.: Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature (2011)

    Google Scholar 

  3. Menéndez, P.: y Graham, C.: Evaluating multiple causes of amphibian declines of Ecuador using geographical quantitative analyses. Ecography 36, 001–014 (2013)

    Article  Google Scholar 

  4. Webster, J: Estudio de la dinámica poblacional de Epipedobates anthonyi (Noble 1921) en 3 localidades del sur-occidente del Ecuador. Tesis Biología del Medio Ambiente. Escuela de biología del Medio Ambiente, Universidad del Azuay. Ecuador (2010)

    Google Scholar 

  5. Olano, J.: y Peralta, J: Modelos predictivos de distribución de especies comunes en matorrales basófilos de navarra: Aplicación en distintos escenarios climáticos. Cuad. Soc. Esp. Cien. For. 12, 47–55 (2001)

    Google Scholar 

  6. Heinicke, M., Duellman, W., y Hedges, S.: Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Natl. Acad. Sci. 104, 10092–10097 (2007)

    Google Scholar 

  7. Yánez-Muñoz, M. y Bejarano-Muñoz, P.: Lista actualizada de ranas terrestres Pristimantis (Anura: Craugastoridae) en las Estribaciones Occidentales del Distrito Metropolitano de Quito, Andes de Ecuador. Sangolquí, Ecuador (2013)

    Google Scholar 

  8. Pacifici, M., Visconti, P., Rondinini, C.: A framework for the identification of hotspots of climate change risk for mammals. Glob Chang Biol 24(4), 1626–1636 (2018)

    Google Scholar 

  9. Mitchell, N., Rodriguez, N., Kuchling, G., Arnall, S., Kearney, M.R.: Reptile embryos and climate change: modelling limits of viability to inform translocation decisions. Biol. Conserv. 204, 134–147 (2016)

    Google Scholar 

  10. Griffis-Kylea, K., Mougey, K., Vanlandeghem, M., Swain, S., Dr ake, J.: Comparison of climate vulnerability among desert herpetofauna. Biol. Conserv. 225, 164–175 (2018)

    Google Scholar 

  11. Bickford, D., Alford, R., Crump, M., Whitfield, S., Karraker, N., Donelly, M.: Impacts of climate change on amphibian biodiversity. In: D. Dellasala, Goldstein, M. (eds.) Encyclopedia of the Anthropocene, pp. 2280. Elsevier (2018)

    Google Scholar 

  12. Schivo, F., Bauni, V., Krug, P., Quintana, R.D.: Distribution and richness of amphibians under different climate change scenarios in a subtropical region of South America. Appl. Geogr. 103, 70–89 (2019)

    Article  Google Scholar 

  13. Morales, N.: Modelos de distribución de especies: Software Maxent y sus aplicaciones en conservación. Biol Conserv 2(1), 1–3 (2012)

    MathSciNet  Google Scholar 

  14. Rodrigues, A.S.L., Andelman, S.J., Bakarr, M.I., Boitani, L., Brooks, T.M., Cowling, R.M., Fishpool, L.D.C., Da Fonseca,G.A.B., Gaston, K.J., Hoffmann, M., Long, J.S., Marquet, P.A., Pilgrim, J.D., Pressey, R.L., Schipper, J., Sechrest, W., Stuart, S.N., Underhill, L.G., Waller, R.W., Watts, M.E.J., y Yan, X.: Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2011)

    Google Scholar 

  15. Elith, J., Graham, C.H., Anderson, R.P., Dudı´k, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G. M., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M.S., Niklaus, E., Zimmermann, N.E.: Novel methods improve prediction of species’ distributions from occurrence data. Ecogrphy 29(2), 129–151 (2006)

    Google Scholar 

  16. Elith, J., y Leathwick, J.R.: Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009)

    Google Scholar 

  17. Jayasinghe, S.L., Kumar, L.: Modeling the climate suitability of tea [Camellia sinensis(L.) O. Kuntze] in Sri Lanka in response to current and future climate change scenarios. Agric. For. Meteorol., 102–117 (2019)

    Google Scholar 

  18. Byeon, D.-h., Jung, S., Lee, W.-H.: Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J. Asia-Pac. Biodivers. 11, 325–333 (2018)

    Google Scholar 

  19. Phillips, S.J., Anderson, R.P., y Schapire, R.E.: Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3), 231–259 (2006)

    Google Scholar 

  20. Hernandez, P.A., Graham, C., Master, L.L., y Albert, D.L.: The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5), 773–785 (2006)

    Google Scholar 

  21. Toranza, C., Brazeiro, A., y Maneyro, R.: Anfibios amenazados de Uruguay: efectividad de las áreas protegidas ante el cambio climático (2016)

    Google Scholar 

  22. Mateo, R.G., Felicísimo, Á.M.: y Muñoz, J: Modelos de distribución de especies: Una revisión sintética. Revista Chilena de Historia Natural 84(2), 217–240 (2011)

    Article  Google Scholar 

  23. Ibarra-Díaz, I., Lebgue-Keleng, T., Viramontes-Olivas, O., Reyes-Cortes, I., Ortega-Gutierrez, J.: y Morales-Nieto, C: Modelo de nicho fundamental para Coryphantha chihuahuensis (cactaceae) en el estado de Chihuahua. México. Ecología Aplicada 15(1), 11–17 (2016)

    Article  Google Scholar 

  24. Magrin, G.: Adaptación al cambio climático en América Latina y el Caribe. CEPAL (2015)

    Google Scholar 

  25. Soberón, J., y Peterson, A.: Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform., 1–10 (2005)

    Google Scholar 

  26. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., y Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas. Wiley InterScience, 1965–1978 (2005)

    Google Scholar 

  27. Phillips, S.J.: y Dudík, M: Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161–175 (2008)

    Article  Google Scholar 

  28. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., y Yates, C.J.: A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57 (2011)

    Google Scholar 

  29. Ávila, R., Villavicencio, R., y Ruiz, J.A.: Distribución potencial de Pinus herrerae Martínez en el occidente del estado de Jalisco. Revista Mexicana de Ciencias Forestales 5(24), 92–109 (2014)

    Google Scholar 

  30. Quesada, M., Acosta, L. G., Arias, D., y Rodríguez, A.: Modelación de nichos ecológicos basado en tres escenarios de cambio climático para cinco especies de plantas en zonas altas de Costa Rica. Revista Forestal Mesoamericana Kurú, 14(34), 1–12 (2016)

    Google Scholar 

  31. Ortega-Andrade, H., Rojas-Soto, O., Paucar, C.: Nuevos datos sobre la ecología de Cochranella mache (Anura: Centrolenidae) y la importancia de las áreas protegidas para esta rana de vidrio Martínez-en peligro crítico en el Neotrópico. PLOS ONE 8(12), 10.1371 (2013)

    Google Scholar 

  32. Martínez-Méndez, N., Aguirre-Planter, E., Eguiarte, L. E., y Jaramillo-Correa, J.P.: Modelado de nicho ecológico de las especies del género Abies (Pinaceae) en México: Algunas implicaciones taxonómicas y para la conservación. Bot. Sci. 94(1), 5–24 (2016)

    Google Scholar 

  33. Mercado, N.: y Wallace R: Distribución de Primates en Bolivia y Áreas Prioritarias para su Conservación. Tropical Conservation Science 3(2), 200–217 (2010)

    Article  Google Scholar 

  34. Araújo, M.B.: y Guisan, A: Five (or so) challenges for species distribution modelling. J. Biogeogr. 33(10), 1677–1688 (2006)

    Article  Google Scholar 

  35. Guisan, A., & Thuiller, W: Predicting species distribution: offering more than simple habitat models. Ecology Letters, S/N (2005)

    Google Scholar 

  36. Ministerio del Ambiente: Estadísticas de Patrimonio Natural. (2015). http://patrimonio.ambiente.gob.ec/2018/09/20

  37. Contreras, R., Luna, I., y Ríos, C.A.: Distribución de Taxus globosa (Taxaceae) en México: Modelos ecológicos de nicho, efectos del cambio del uso de suelo y conservación. Revista Chilena de Historia Natural 83(3), 421–433 (2010)

    Google Scholar 

  38. Arribas, P., Abellan, P., Velasco, J., Bilton, D., Lobo, J.: La vulnerabilidad de las especies frente a cambio climático, un reto urgente para la conservación de la biodiversidad. Ecosistemas 21(3), 79–8 (2012)

    Google Scholar 

  39. Frenkel, C., Guayasamín, J.M, Páez-Rosales, N., Yánez-Muñoz, M.H., Varela-Jaramillo, A., y Ron, S.R.: Género Pristimantis En: Ron, S.R., Yanez-Muñoz, M.H., Merino-Viteri, A., Ortiz, D.A. (eds.) Anfibios del Ecuador. Museo de Zoología, Pontificia Universidad Católica del Ecuador (2016)

    Google Scholar 

  40. Borja, M.: Modelamiento de nicho ecológico de las ranas de cristal [Amphibia: Anura: Centrolenidae] del Ecuador a partir de registros de museología: predicción del área de ocupación y evaluación en relación con el Sistema Nacional de Áreas Protegidas del Ecuador (tesis de posgrado). Universidad San Francisco de Quito, Quito, Ecuador (2009)

    Google Scholar 

Download references

Acknowledgements

This study leads to an enormous Biodiversity Conservation research and is part of a thesis titled “Potential Distribution of Six Species of to the Pristimantis Genus under climate change scenarios in Ecuador”.

The authors would like to acknowledge to the “Instituto Nacional de Biodiversidad” (INABIO), particularly to M.Sc. Mario Yánez for facilitating access to its biological data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheza Jessica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jessica, C., Oscar, R., Paúl, A., Tania, O., Ortega-Andrade, S. (2020). Climate Change Effects on the Development of Six Pristimantis Frog Species in Ecuador. In: Basantes-Andrade, A., Naranjo-Toro, M., Zambrano Vizuete, M., Botto-Tobar, M. (eds) Technology, Sustainability and Educational Innovation (TSIE). TSIE 2019. Advances in Intelligent Systems and Computing, vol 1110. Springer, Cham. https://doi.org/10.1007/978-3-030-37221-7_3

Download citation

Publish with us

Policies and ethics