Skip to main content

Part of the book series: MS&A ((MS&A,volume 19))

  • 656 Accesses

Abstract

In this chapter, we apply the HHO method to the discretisation of the steady Stokes problem, which models fluid flows where convective inertial forces are small compared to viscous forces. From a physical point of view, the Stokes problem is obtained writing momentum and mass balance equations. In the case of a uniform density fluid, the mass balance translates into a zero-divergence constraint on the velocity, enabling an interpretation as a constrained minimisation (saddle-point) problem with the pressure acting as the Lagrange multiplier; see Remark 8.7. As a consequence, the well-posedness of the Stokes problem hinges on an inf–sup rather than a coercivity condition. This property has to be reproduced at the discrete level, which requires to select the discrete spaces for the velocity and pressure so that the discrete divergence operator from the former to the latter is surjective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Aghili, S. Boyaval, D.A. Di Pietro, Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Meth. Appl. Math. 15(2), 111–134 (2015). https://doi.org/10.1515/cmam-2015-0004

    Article  MathSciNet  Google Scholar 

  2. L. Beirão da Veiga, C. Lovadina, G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: Math. Model. Numer. Anal. (M2AN) 51(2), 509–535 (2017). https://doi.org/10.1051/m2an/2016032

  3. D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44 (Springer, Heidelberg, 2013), pp. xiv+685. https://doi.org/10.1007/978-3-642-36519-5

  4. M. Bogovskiı̆, Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Novosibirsk, Russia: Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat. Chap. Solutions of some problems of vector analysis associated with the operators div and grad. Trudy Sem. S. L. Soboleva. 149(1), 5–40 (1980)

    Google Scholar 

  5. L. Botti, D.A. Di Pietro, J. Droniou, A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits. Comput. Methods Appl. Mech. Eng. 341, 278–310 (2018). https://doi.org/10.1016/j.cma.2018.07.004

    Article  MathSciNet  Google Scholar 

  6. M. Botti, D.A. Di Pietro, P. Sochala, A Hybrid High-Order discretization method for nonlinear poroelasticity. Comput. Meth. Appl. Math. (2019). https://doi.org/10.1515/cmam-2018-0142

  7. H. Brézis. Functional Analysis, Sobolev Spaces, and Partial Differential Equations. Universitext (Springer, New York, 2011). ISBN: 978-0-387-70913-0

    MATH  Google Scholar 

  8. A. Cangiani, V. Gyrya, G. Manzini, The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016). https://doi.org/10.1137/15M1049531

    Article  MathSciNet  Google Scholar 

  9. B. Cockburn, N.C. Nguyen, J. Peraire, A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1–3), 215–237 (2010). https://doi.org/10.1007/s10915-010-9359-0

    Article  MathSciNet  Google Scholar 

  10. R. Codina, Numerical solution of the incompressible Navier–Stokes equations with Coriolis forces based on the discretization of the total time derivative. J. Comput. Phys. 148(2), 467–496 (1999). https://doi.org/10.1006/jcph.1998.6126

    Article  MathSciNet  Google Scholar 

  11. R. Codina, O. Soto, Finite element solution of the Stokes problem with dominating Coriolis force. Comput. Methods Appl. Mech. Eng. 142(3–4), 215–234 (1997). https://doi.org/10.1016/S0045-7825(96)01141-3

    Article  MathSciNet  Google Scholar 

  12. M. Dauge, Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations. SIAM J. Math. Anal. 20(1), 74–97 (1989). https://doi.org/10.1137/0520006

    Article  MathSciNet  Google Scholar 

  13. D.A. Di Pietro, A. Ern, S. Lemaire, A review of hybrid high-order methods: formulations, computational aspects, comparison with other methods, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 114 (Springer, Berlin, 2016). ISBN: 978-3-319-41638-0 (Print) 978-3-319-41640-3 (eBook). https://doi.org/10.1007/978-3-319-41640-3

  14. D.A. Di Pietro, A. Ern, A. Linke, F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Meth. Appl. Mech. Eng. 306, 175–195 (2016). https://doi.org/10.1016/j.cma.2016.03.033

    Article  MathSciNet  Google Scholar 

  15. O. Dorok, W. Grambow, L. Tobiska, Aspects of finite element discretizations for solving the Boussinesq approximation of the Navier–Stokes Equations, in Notes on Numerical Fluid Mechanics: Numerical Methods for the Navier–Stokes Equations. Proceedings of the International Workshop held at Heidelberg, October 1993, vol. 47 (1994), pp. 50–61

    Google Scholar 

  16. R.G. Durán, M.A. Muschietti, An explicit right inverse of the divergence operator which is continuous in weighted norms. Studia Math. 148(3), 207–219 (2001). https://doi.org/10.4064/sm148-3-2

    Article  MathSciNet  Google Scholar 

  17. H. Egger, C. Waluga, hpanalysis of a hybrid DG method for Stokes flow. IMA J. Numer. Anal. 33(2), 687–721 (2013). https://doi.org/10.1093/imanum/drs018

  18. A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159 (Springer, New York, 2004). https://doi.org/10.1007/978-1-4757-4355-5

  19. M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11(4), 341–354, iii (1977). https://doi.org/10.1051/m2an/1977110403411

  20. G.N. Gatica. A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. SpringerBriefs in Mathematics (Springer, Cham, 2014), pp. xii+132. ISBN: 978-3-319-03694-6; 978-3-319-03695-3. https://doi.org/10.1007/978-3-319-03695-3

  21. V. Girault, P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5 (Springer, Berlin, 1986), pp. x+374. ISBN: 3-540-15796-4

    Google Scholar 

  22. R.B. Kellogg, J.E. Osborn, A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21(4), 397–431 (1976)

    Article  MathSciNet  Google Scholar 

  23. R.J. Labeur, G.N. Wells, Energy stable and momentum conserving hybrid finite element method for the incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 34(2), A889–A913 (2012). https://doi.org/10.1137/100818583

    Article  MathSciNet  Google Scholar 

  24. A. Linke, Collision in a cross-shaped domain—a steady 2d Navier–Stokes example demonstrating the importance of mass conservation in CFD. Comput. Methods Appl. Mech. Eng. 198(41–44), 3278–3286 (2009). https://doi.org/10.1016/j.cma.2009.06.016

    Article  MathSciNet  Google Scholar 

  25. J. Nečas. Equations Aux Dérivées Partielles (Presses de l’Université de Montréal, Montréal, 1965)

    Google Scholar 

  26. J.-C. Nédélec, Mixed finite elements in R 3. Numer. Math. 35(3), 315–341 (1980). https://doi.org/10.1007/BF01396415

    Article  MathSciNet  Google Scholar 

  27. N.C. Nguyen, J. Peraire, B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010). https://doi.org/10.1016/j.cma.2009.10.007

    Article  MathSciNet  Google Scholar 

  28. A. Quarteroni, A. Valli. Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, vol. 23 (Springer, Berlin, 1994), pp. xvi+543. ISBN: 3-540-57111-6

    Google Scholar 

  29. P.A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of the Finite Element Method, ed. by I. Galligani, E. Magenes (Springer, New York, 1977)

    Google Scholar 

  30. V.A. Solonnikov, L p-estimates for solutions of the heat equation in a dihedral angle. Rend. Mat. Appl. 21, 1–15 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Pietro, D.A., Droniou, J. (2020). Stokes. In: The Hybrid High-Order Method for Polytopal Meshes. MS&A, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-37203-3_8

Download citation

Publish with us

Policies and ethics