Skip to main content

Basic Principles of Hybrid High-Order Methods: The Poisson Problem

  • Chapter
  • First Online:
The Hybrid High-Order Method for Polytopal Meshes

Part of the book series: MS&A ((MS&A,volume 19))

  • 651 Accesses

Abstract

In this chapter we introduce the main ideas underlying HHO methods, using to this purpose the Poisson problem: Find \(u:\Omega \to \mathbb {R}\) such that

$$\displaystyle \begin{aligned} \begin{array}{rcl} -{\Delta} u &= f \qquad \text{in}\ \Omega, \\ u &= 0 \qquad \text{on}\ \partial\Omega, \end{array} \end{aligned}$$

where Ω is an open bounded polytopal subset of \(\mathbb {R}^n\), n ≥ 2, with boundary  Ω and \(f:\Omega \to \mathbb {R}\) is a given volumetric source term, assumed to be in L 2( Ω).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Aghili, S. Boyaval, D.A. Di Pietro, Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Meth. Appl. Math. 15(2), 111–134 (2015). https://doi.org/10.1515/cmam-2015-0004

    Article  MathSciNet  Google Scholar 

  2. J. Aghili, D.A. Di Pietro, B. Ruffini, An hp-Hybrid High-Order method for variable diffusion on general meshes. Comput. Meth. Appl. Math. 17(3), 359–376 (2017). https://doi.org/10.1515/cmam-2017-0009

    Article  MathSciNet  Google Scholar 

  3. D. Anderson, J. Droniou, An arbitrary order scheme on generic meshes for miscible displacements in porous media. SIAM J. Sci. Comput. 40(4), B1020–B1054 (2018). https://doi.org/10.1137/17M1138807

    Article  MathSciNet  Google Scholar 

  4. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982). https://doi.org/10.1137/0719052

    Article  MathSciNet  Google Scholar 

  5. I. Babuška, M. Suri, The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal. 24(4), 750–776 (1987)

    Article  MathSciNet  Google Scholar 

  6. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. (M3AS) 199(23), 199–214 (2013). https://doi.org/10.1142/S0218202512500492

  7. L. Beirão da Veiga, A. Chernov, L. Mascotto, A. Russo, Basic principles of hpvirtual elements on quasiuniform meshes. Math. Models Methods Appl. Sci. 26(8), 1567–1598 (2016). https://doi.org/10.1142/S021820251650038X

    Article  MathSciNet  Google Scholar 

  8. D. Boffi, D.A. Di Pietro, Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM: Math. Model Numer. Anal. 52(1), 1–28 (2018). https://doi.org/10.1051/m2an/2017036

    Article  MathSciNet  Google Scholar 

  9. S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003). https://doi.org/10.1137/S0036142902401311

    Article  MathSciNet  Google Scholar 

  10. A. Cangiani, E.H. Georgoulis, P. Houston, hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014). https://doi.org/10.1142/ S0218202514500146

  11. A. Cangiani, Z. Dong, E.H. Georgoulis, P. Houston. hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer Briefs in Mathematics (Springer, Cham, 2017), pp. viii+131. ISBN: 978-3-319-67671-5; 978-3-319-67673-9

    Google Scholar 

  12. P. Castillo, B. Cockburn, I. Perugia, D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000). https://doi.org/10.1137/S0036142900371003

    Article  MathSciNet  Google Scholar 

  13. B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009). https://doi.org/10.1137/070706616

    Article  MathSciNet  Google Scholar 

  14. B. Cockburn, D.A. Di Pietro, A. Ern, Bridging the Hybrid High-Order and hybridizable discontinuous Galerkin methods. ESAIM: Math. Model. Numer. Anal. 50(3), 635–650 (2016). https://doi.org/10.1051/m2an/2015051

    Article  MathSciNet  Google Scholar 

  15. D.A. Di Pietro, J. Droniou, A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. Math. Comp. 86(307), 2159–2191 (2017). https://doi.org/10.1090/mcom/3180

    Article  MathSciNet  Google Scholar 

  16. D.A. Di Pietro, A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comp. 79(271), 1303–1330 (2010). https://doi.org/10.1090/S0025-5718-10-02333-1

    Article  MathSciNet  Google Scholar 

  17. D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications [Mathematics & Applications], vol. 69 (Springer, Berlin, 2012), pp. xviii+384. ISBN: 978-3-642-22979-4. https://doi.org/10.1007/978-3-642-22980-0

  18. D.A. Di Pietro, A. Ern, Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA J. Numer. Anal. 37(1), 40–63 (2017). https://doi.org/10.1093/imanum/drw003

    Article  MathSciNet  Google Scholar 

  19. D.A. Di Pietro, R. Specogna, An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics. J. Comput. Phys. 326(1), 35–55 (2016). https://doi.org/10.1016/j.jcp.2016.08.041

    Article  MathSciNet  Google Scholar 

  20. D.A. Di Pietro, A. Ern, S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl. Math. 14(4), 461–472 (2014). https://doi.org/10.1515/cmam-2014-0018

    Article  MathSciNet  Google Scholar 

  21. J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(8), 1575–1619 (2014). https://doi.org/10.1142/S0218202514400041

    Article  MathSciNet  Google Scholar 

  22. J. Droniou, R. Eymard, T. Gallouët, C. Guichard, R. Herbin. The Gradient Discretisation Method. Mathematics & Applications, vol. 82 (Springer, Berlin, 2018), p. 511. ISBN: 978-3-319-79041-1 (Softcover) 978-3-319-79042-8 (eBook). https://doi.org/10.1007/978-3-319-79042-8

  23. A. Ern, A.F. Stephansen, M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234(1), 114–130 (2010). https://doi.org/10.1016/j.cam.2009.12.009

    Article  MathSciNet  Google Scholar 

  24. R. Eymard, T. Gallouët, R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010). https://doi.org/10.1093/imanum/drn084

    MATH  Google Scholar 

  25. P. Grisvard, Singularities in Boundary Value Problems (Masson, Paris, 1992)

    MATH  Google Scholar 

  26. P.D. Lax, A.N. Milgram, Parabolic equations, in Contributions to the Theory of Partial Differential Equations. Annals of Mathematics Studies, vol. 33 (Princeton University Press, Princeton, 1954), pp. 167–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Pietro, D.A., Droniou, J. (2020). Basic Principles of Hybrid High-Order Methods: The Poisson Problem. In: The Hybrid High-Order Method for Polytopal Meshes. MS&A, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-37203-3_2

Download citation

Publish with us

Policies and ethics