Skip to main content

Part of the book series: MS&A ((MS&A,volume 19))

  • 659 Accesses

Abstract

In this chapter we introduce the setting for the development and analysis of Hybrid High-Order (HHO) methods. These methods are built upon general meshes possibly including polytopal elements and non-matching interfaces. In Sect. 1.1 we give a precise definition of polytopal mesh, and introduce the notion of regular sequence of h-refined polytopal meshes. In Sect. 1.2 we recall some basic notions on standard Lebesgue and Sobolev spaces, on the space H(div; Ω), and on polynomial spaces. We next introduce the first building block of HHO methods, namely local polynomial spaces, and prove some fundamental results for the analysis including, in particular, the comparison of Lebesgue and Sobolev (semi)norms defined on such spaces, as well as local trace inequalities valid on regular mesh sequences. Section 1.3 is devoted to the second key ingredient in HHO methods: projectors on local polynomial spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Adams, J.J.F. Fournier, Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. (Elsevier/Academic, Amsterdam, 2003), pp. xiv+305. ISBN: 0-12-044143-8

    Google Scholar 

  2. G. Allaire, Analyse Numérique et Optimisation (Les éditions de l’École Polytechnique, Palaiseau, 2009)

    Google Scholar 

  3. P.F. Antonietti, A. Cangiani, J. Collis, Z. Dong, E.H. Georgoulis, S. Giani, P. Houston, Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 114 (Springer, Cham, 2016), pp. 279–308

    Google Scholar 

  4. D.N. Arnold, D. Boffi, R.S. Falk, Approximation by quadrilateral finite elements. Math. Comp. 71(239), 909–922 (2002). https://doi.org/10.1090/S0025-5718-02-01439-4

    Article  MathSciNet  Google Scholar 

  5. F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012). https://doi.org/10.1016/j.jcp.2011.08.018

    Article  MathSciNet  Google Scholar 

  6. L. Beirão da Veiga, A. Russo, G. Vacca. The Virtual Element Method with Curved Edges (2017). Preprint arXiv. https://arxiv.org/abs/1711.04306

  7. D. Boffi, D.A. Di Pietro, Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM: Math. Model Numer. Anal. 52(1), 1–28 (2018). https://doi.org/10.1051/m2an/2017036

    Article  MathSciNet  Google Scholar 

  8. D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44 (Springer, Heidelberg, 2013), pp. xiv+685. https://doi.org/10.1007/978-3-642-36519-5

  9. L. Botti, Influence of reference-to-physical frame mappings on approximation properties of discontinuous piecewise polynomial spaces. J. Sci. Comput. 52(3), 675–703 (2012). https://doi.org/10.1007/s10915-011-9566-3

    Article  MathSciNet  Google Scholar 

  10. L. Botti, D.A. Di Pietro, Numerical assessment of hybrid high-order methods on curved meshes and comparison with discontinuous Galerkin methods. J. Comput. Phys. 370, 58–84 (2018). https://doi.org/10.1016/j.jcp.2018.05.017

    Article  MathSciNet  Google Scholar 

  11. S.C. Brenner, R. Scott. The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. (Springer, New York, 2008), pp. xviii+397. ISBN: 978-0-387-75933-3. https://doi.org/10.1007/978-0-387-75934-0

  12. H. Brézis. Functional Analysis, Sobolev Spaces, and Partial Differential Equations. Universitext (Springer, New York, 2011). ISBN: 978-0-387-70913-0

    MATH  Google Scholar 

  13. F. Brezzi, K. Lipnikov, M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16(2), 275–297 (2006). https://doi.org/10.1142/S0218202506001157

    Article  MathSciNet  Google Scholar 

  14. A. Cangiani, E.H. Georgoulis, P. Houston, hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014). https://doi.org/10.1142/S0218202514500146

  15. A. Cangiani, Z. Dong, E.H. Georgoulis, P. Houston. hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer Briefs in Mathematics (Springer, Cham, 2017), pp. viii+131. ISBN: 978-3-319-67671-5; 978-3-319-67673-9

    Google Scholar 

  16. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40 . Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)] (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2002), pp. xxviii+530. ISBN: 0-89871-514-8

    Google Scholar 

  17. D.A. Di Pietro, A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comp. 79(271), 1303–1330 (2010). https://doi.org/10.1090/S0025-5718-10-02333-1

    Article  MathSciNet  Google Scholar 

  18. D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications [Mathematics & Applications], vol. 69 (Springer, Berlin, 2012), pp. xviii+384. ISBN: 978-3-642-22979-4. https://doi.org/10.1007/978-3-642-22980-0

  19. D.A. Di Pietro, S. Lemaire, An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comp. 84(291), 1–31 (2015). https://doi.org/10.1090/S0025-5718-2014-02861-5

    Article  MathSciNet  Google Scholar 

  20. D.A. Di Pietro, R. Specogna, An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics. J. Comput. Phys. 326(1), 35–55 (2016). https://doi.org/10.1016/j.jcp.2016.08.041

    Article  MathSciNet  Google Scholar 

  21. J. Droniou, R. Eymard, T. Gallouët, C. Guichard, R. Herbin. The Gradient Discretisation Method. Mathematics & Applications, vol. 82 (Springer, Berlin, 2018), p. 511. ISBN: 978-3-319-79041-1 (Softcover) 978-3-319-79042-8 (eBook). https://doi.org/10.1007/978-3-319-79042-8

  22. T. Dupont, R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34(150), 441–463 (1980). https://doi.org/10.2307/2006095

    Article  MathSciNet  Google Scholar 

  23. A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159 (Springer, New York, 2004). https://doi.org/10.1007/978-1-4757-4355-5

  24. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998), pp. xviii+662. ISBN: 0-8218-0772-2

    Google Scholar 

  25. R. Herbin, F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in Finite Volumes for Complex Applications V, ed. by R. Eymard, J.-M. Hérard (Wiley, Hoboken, 2008), pp. 659–692

    MATH  Google Scholar 

  26. J.-L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I (translated from the French by P. Kenneth). Die Grundlehren der mathematischen Wissenschaften, Band, vol. 181 (Springer, New York, 1972), pp. xvi+357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Pietro, D.A., Droniou, J. (2020). Setting. In: The Hybrid High-Order Method for Polytopal Meshes. MS&A, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-37203-3_1

Download citation

Publish with us

Policies and ethics