Skip to main content

Pairing Users in Social Media via Processing Meta-data from Conversational Files

  • Conference paper
  • First Online:
  • 1040 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11932))

Abstract

Massive amounts of data today are being generated from users engaging on social media. Despite knowing that whatever they post on social media can be viewed, downloaded and analyzed by unauthorized entities, a large number of people are still willing to compromise their privacy today. On the other hand though, this trend may change. Improved awareness on protecting content on social media, coupled with governments creating and enforcing data protection laws, mean that in the near future, users may become increasingly protective of what they share. Furthermore, new laws could limit what data social media companies can use without explicit consent from users. In this paper, we present and address a relatively new problem in privacy-preserved mining of social media logs. Specifically, the problem here is the feasibility of deriving the topology of network communications (i.e., match senders and receivers in a social network), but with only meta-data of conversational files that are shared by users, after anonymizing all identities and content. More explicitly, if users are willing to share only (a) whether a message was sent or received, (b) the temporal ordering of messages and (c) the length of each message (after anonymizing everything else, including usernames from their social media logs), how can the underlying topology of sender-receiver patterns be generated. To address this problem, we present a Dynamic Time Warping based solution that models the meta-data as a time series sequence. We present a formal algorithm and interesting results in multiple scenarios wherein users may or may not delete content arbitrarily before sharing. Our performance results are very favorable when applied in the context of Twitter. Towards the end of the paper, we also present interesting practical applications of our problem and solutions. To the best of our knowledge, the problem we address and the solution we propose are unique, and could provide important future perspectives on learning from privacy-preserving mining of social media logs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended feature leakage in collaborative learning. arXiv preprint arXiv:1805.04049 (2018)

  2. Hunt, T., Song, C., Shokri, R., Shmatikov, V., Witchel, E.: Chiron: privacy-preserving machine learning as a service. arXiv preprint arXiv:1803.05961 (2018)

  3. Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that remember too much. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 587–601. ACM (2017)

    Google Scholar 

  4. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable encryption from constrained cryptographic primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1465–1482. ACM (2017)

    Google Scholar 

  5. Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 1053–1067. ACM (2017)

    Google Scholar 

  6. Jung, A.R.: The influence of perceived Ad relevance on social media advertising: an empirical examination of a mediating role of privacy concern. Comput. Hum. Behav. 70, 303–309 (2017)

    Article  Google Scholar 

  7. Tsay-Vogel, M., Shanahan, J., Signorielli, N.: Social media cultivating perceptions of privacy: a 5-year analysis of privacy attitudes and self-disclosure behaviors among facebook users. New Media Soc. 20(1), 141–161 (2018)

    Article  Google Scholar 

  8. Benton, A., Arora, R., Dredze, M.: Learning multiview embeddings of twitter users. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 14–19 (2016)

    Google Scholar 

  9. Huang, S., Zhang, J., Wang, L., Hua, X.: Social friend recommendation based on multiple network correlation. IEEE Trans. Multimedia 18(2), 287–299 (2016). https://doi.org/10.1109/TMM.2015.2510333

    Article  Google Scholar 

  10. Vatsalan, D., Christen, P.: Privacy-preserving matching of similar patients. J. Biomed. Inform. 59, 285–298 (2016). https://doi.org/10.1016/j.jbi.2015.12.004. http://www.sciencedirect.com/science/article/pii/S1532046415002841

    Article  Google Scholar 

  11. Randall, S.M., Ferrante, A.M., Boyd, J.H., Bauer, J.K., Semmens, J.B.: Privacy-preserving record linkage on large real world datasets. J. Biomed. Inform. 50, 205–212 (2014). https://doi.org/10.1016/j.jbi.2013.12.003. http://www.sciencedirect.com/science/article/pii/S1532046413001949. Special Issue on Informatics Methods in Medical Privacy

    Article  Google Scholar 

  12. Chi, Y., Hong, J., Jurek, A., Liu, W., O’Reilly, D.: Privacy preserving record linkage in the presence of missing values. Inf. Syst. 71, 199–210 (2017). https://doi.org/10.1016/j.is.2017.07.001. http://www.sciencedirect.com/science/article/pii/S030643791630504X

    Article  Google Scholar 

  13. Fulcher, B.D., Jones, N.S.: Highly comparative feature-based time-series classification. IEEE Trans. Knowl. Data Eng. 26(12), 3026–3037 (2014)

    Article  Google Scholar 

  14. SerrÃ, J., Arcos, J.L.: An empirical evaluation of similarity measures for time series classification. Knowl.-Based Syst. 67, 305–314 (2014). https://doi.org/10.1016/j.knosys.2014.04.035. http://www.sciencedirect.com/science/article/pii/S0950705114001658

    Article  Google Scholar 

  15. Bellman, R., Kalaba, R.: On adaptive control processes. IRE Trans. Autom. Control. 4(2), 1–9 (1959)

    Article  Google Scholar 

  16. Myers, C., Rabiner, L., Rosenberg, A.: Performance tradeoffs in dynamic time warping algorithms for isolated word recognition. IEEE Trans. Acoust. Speech Signal Process. 28(6), 623–635 (1980)

    Article  Google Scholar 

  17. Senin, P.: Dynamic time warping algorithm review. Inf. Comput. Sci. 855(1–23), 40 (2008). Department University of Hawaii at Manoa Honolulu, USA

    Google Scholar 

  18. Chassiakos, Y.L.R., Radesky, J., Christakis, D., Moreno, M.A., Cross, C., et al.: Children and adolescents and digital media. Pediatrics 138(5), e20162593 (2016)

    Article  Google Scholar 

  19. Ballano, S., Uribe, A.C., Munté-Ramos, R.À.: Young users and the digital divide: readers, participants or creators on internet? (2014)

    Article  Google Scholar 

  20. Miller, J.L., Paciga, K.A., Danby, S., Beaudoin-Ryan, L., Kaldor, T.: Looking beyond swiping and tapping: review of design and methodologies for researching young children’s use of digital technologies. Cyberpsychology: J. Psychosoc. Res. Cyberspace 11(3), 6 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by US National Science Foundation (Grant # 1718071). Any opinions, findings and conclusions are those of the authors alone, and do not reflect views of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Chellappan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaudhary, M., Sharma, R., Chellappan, S. (2019). Pairing Users in Social Media via Processing Meta-data from Conversational Files. In: Madria, S., Fournier-Viger, P., Chaudhary, S., Reddy, P. (eds) Big Data Analytics. BDA 2019. Lecture Notes in Computer Science(), vol 11932. Springer, Cham. https://doi.org/10.1007/978-3-030-37188-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37188-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37187-6

  • Online ISBN: 978-3-030-37188-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics