Skip to main content

GSM: Inductive Learning on Dynamic Graph Embeddings

  • Conference paper
  • First Online:
Network Algorithms, Data Mining, and Applications (NET 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 315))

Included in the following conference series:

Abstract

In this paper, we study the problem of learning graph embeddings for dynamic networks and the ability to generalize to unseen nodes called inductive learning. Firstly, we overview the state-of-the-art methods and techniques for constructing graph embeddings and learning algorithms for both transductive and inductive approaches. Secondly, we propose an improved GSM based on GraphSAGE algorithm and set up the experiments on datasets CORA, Reddit, and HSEcite, which is collected from Scopus citation database across the authors with affiliation to NRU HSE in 2011–2017. The results show that our three-layer model with attention-based aggregation function, added normalization layers, regularization (dropout) outperforms suggested by the respective authors’ GraphSAGE models with mean, LSTM, and pool aggregation functions, thus giving more insight into possible ways to improve inducting learning model based on GraphSAGE model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM (2007)

    Google Scholar 

  2. Laptsuev, R., Ananyeva, M., Meinster, D., Makarov, I., Karpov, I., Zhukov, L.: Information propagation strategies in online social networks. In: Large Scale Networks - Computational Aspects and Applications - Computational Aspects and Applications, pp. 1–8 (2018)

    Google Scholar 

  3. Khayrullin, R.M., Makarov, I., Zhukov, L.E.: Predicting psychology attributes of a social network user. In Proceedings of EEML Workshop. Ceur WP, pp. 1–10 (2017)

    Google Scholar 

  4. Kyriakopoulos, F., Thurner, S., Puhr, C., Schmitz, S.W.: Network and eigenvalue analysis of financial transaction networks. Eur. Phys. J. B 71(4), 523 (2009)

    Article  Google Scholar 

  5. Makarov, I., Gerasimova, O., Sulimov, P., Zhukov, L.E.: Recommending co-authorship via network embeddings and feature engineering: the case of national research university higher school of economics. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries, ser. JCDL ’18, pp. 365–366. New York, NY, USA, ACM, (2018). https://doi.org/10.1145/3197026.3203911

  6. Makarov, I., Bulanov, O., Gerasimova, O., Meshcheryakova, N., Karpov, I., Zhukov, L.E.: Scientific matchmaker: collaborator recommender system. In: van der Aalst, W.M., Ignatov, D.I., Khachay, M., Kuznetsov, S.O., Lempitsky, V., Lomazova, I.A., Loukachevitch, N., Napoli, A., Panchenko, A., Pardalos, P.M., Savchenko, A.V., Wasserman, S. (eds.) Analysis of Images, Social Networks and Texts, pp. 404–410. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  7. Makarov, I., Bulanov, O., Zhukov, L.E.: Co-author recommender system. In: Kalyagin, V.A., Nikolaev, A.I., Pardalos, P.M., Prokopyev, O.A. (eds.) Models, Algorithms, and Technologies for Network Analysis, pp. 251–257. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  8. Kurmukov, A., Ananyeva, M., Dodonova, Y., Gutman, B., Faskowitz, J., Jahanshad, N., Thompson, P., Zhukov, L.: Classifying phenotypes based on the community structure of human brain networks. In: Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics, pp. 3–11. Springer, Berlin (2017)

    Google Scholar 

  9. Brohee, S., Van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinform. 7(1), 488 (2006)

    Article  Google Scholar 

  10. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  11. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. arXiv:1711.08752 (2017)

  12. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems, techniques and applications. IIEEE Trans. Knowl. Data Eng (2018)

    Google Scholar 

  13. Leskovec, J.: Deep learning for network biology. part 1: network propagation and node embeddings. Tutorial (2018)

    Google Scholar 

  14. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  15. Mees, A., Rapp, P., Jennings, L.: Singular-value decomposition and embedding dimension. Phys. Rev. A 36(1), 340 (1987)

    Article  Google Scholar 

  16. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114. ACM (2016)

    Google Scholar 

  17. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: AAAI, pp. 203–209 (2017)

    Google Scholar 

  18. Wang, J.: Locally linear embedding. In: Geometric Structure of High-Dimensional Data and Dimensionality Reduction, pp. 203–220. Springer, Berlin (2012)

    Google Scholar 

  19. Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900. ACM (2015)

    Google Scholar 

  20. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  22. Tu, C., Zhang, W., Liu, Z., Sun, M., et al.: Max-margin deepwalk: discriminative learning of network representation. In: IJCAI, pp. 3889–3895 (2016)

    Google Scholar 

  23. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  24. Rozemberczki, B., Sarkar, R.: Fast sequence-based embedding with diffusion graphs. In: International Workshop on Complex Networks, pp. 99–107. Springer, Berlin (2018)

    Google Scholar 

  25. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised embedding. In: Neural Networks: Tricks of the Trade, pp. 639–655 (2012)

    Google Scholar 

  26. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  27. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 912–919 (2003)

    Google Scholar 

  28. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    Google Scholar 

  29. Ma, J., Cui, P., Zhu, W.: Depthlgp: learning embeddings of out-of-sample nodes in dynamic networks. In: AAAI (2018)

    Google Scholar 

  30. Bojchevski, A., GĂĽnnemann, S.: Deep gaussian embedding of attributed graphs: unsupervised inductive learning via ranking. arXiv:1707.03815 (2017)

  31. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks, 1(2). arXiv:1710.10903 (2017)

Download references

Acknowledgements

Sections 2–5 were prepared under the support by the Russian Science Foundation under grant 17-11-01294, performed at National Research University Higher School of Economics, Russia. Section 1 was prepared under support by RFBR grant 16-29-09583 “Development of methodology, methods and tools for identifying and countering the proliferation of malicious information campaigns in the Internet”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Makarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ananyeva, M., Makarov, I., Pendiukhov, M. (2020). GSM: Inductive Learning on Dynamic Graph Embeddings. In: Bychkov, I., Kalyagin, V., Pardalos, P., Prokopyev, O. (eds) Network Algorithms, Data Mining, and Applications. NET 2018. Springer Proceedings in Mathematics & Statistics, vol 315. Springer, Cham. https://doi.org/10.1007/978-3-030-37157-9_6

Download citation

Publish with us

Policies and ethics